WTF, a low-poly goat?

20160322_3D Print Trophy

Yes, a low-poly goat. A few in fact.

These are 2 trophies that I’ve 3D printed for my second year class at Griffith University as awards for their current project designing lights for Yellow Goat. Nothing beats getting the students to work on real projects with industry, and adding an extra incentive with these trophies adds an extra competitive level and of course bragging rights for the winners! If you look back to one of the largest 3D printing projects I’ve tacked using desktop machines, the Mario Kart Trophy, you’ll see it’s not the first time I’ve used 3D printing to create a custom trophy. It’s turning out to be a great application of 3D printing since you can get really creative and produce them very cheaply (I wonder if trophy manufacturers are using 3D printing?). On the left is the trophy for the best design as picked by the team from Yellow Goat, and the trophy on the right is for the best team leader, chosen by averaging the marks of all team members and finding which team overall has the highest marks.

20160323_Rhino Low Poly

The 3D CAD modelling of this design was not as straight forward as most of the other designs on my website, so here is my workflow in case you’d like to try something similar (you don’t need the same software, just to understand the process):

  1. Trace the outline of the Yellow Goat logo (shown above right) in Adobe Illustrator. Export as a .dxf file, providing accurate 2D line-work to use in the 3D CAD model (you could just bring the image directly into your CAD software if you prefer).
  2. Import the .dxf file into Solidworks. Use this line-work to base your 3D modeling off. I also created some guide lines to ensure that my model would fit onto my desktop 3D printer without needing to scale later.
  3. Export the final model from Solidworks as a .IGS file.
  4. Import the .IGS file into Rhino. The model in the image above on the left is the imported model from Solidworks (yes you could just model the design in Rhino to begin with, however I knew I could get to this point much faster in Solidworks).
  5. Use the “Reduce Mesh” tool in Rhino to reduce the number of faces of the mesh. I reduced mine by about 93%, resulting in the low-poly model shown above. It’s also possible to do this type of low-poly conversion using the free software MeshLab, just click here to read one of my previous posts about how to do this.
  6. Because 93% is a huge reduction, the resulting mesh did have some gaps where the software didn’t know what to do, so was not watertight (manifold) and ready to 3D print. I manually cleaned up some of the edges and added some surfaces to fix this issue.
  7. Export as .stl and 3D print!

20160321_Yellow Goat

As you can see I still ended up splitting the large goat piece in order to minimise support material, printing the body piece upside down with the legs in the air and gluing the head back on later. It took a few prints to get the smaller goat right, the middle image above showing some of the messy surfaces I was getting from the Up! Plus 2 printer I used, surprising since it’s normally very good. The ABS seemed a little more sticky than normal as well, meaning the support material didn’t just peel away but had to be scraped and cut, making more of a mess. But third time lucky! I also downloaded the human figure from Thingiverse to again save some time, and it gives the effect I wanted anyway. A bit of chrome spray paint, a chipboard base and voila!

Check out the 3D model above for the full effect of the low-poly design!

– Posted by James Novak

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s