Enabled by 3D – Twisty Pen Grip

20160829_3D Print Pen Grip

It’s competition time at MyMiniFactory and I thought I’d use it as an excuse to spend an afternoon creating something new and simple to 3D print. The “#enabledby3d” competition brief calls for an “item that makes an everyday chore easier, or an enabling device, allowing those with disabilities greater accessibility.”

I decided to focus on something most of us take for granted – writing and drawing with a pen. If you have arthritis or some other sort of hand dexterity problems from injury or illness, picking up a cheap standard pen and using it can be frustrating, painful or even impossible. One option is to pay a lot more money for large diameter pens, or buy those slide-on grips which look ugly and draw attention to the fact that you may have grip difficulties.

So what I’ve created is a simple sheath that slides over the full length of a standard Bic pen or similar, significantly increasing the diameter of the pen and changing the geometry so that it may be more easily maneuvered. The sheath prints without needing any support material, and the cheap pen simply sides inside ready to use. What I hope is achieved by this design is something that not only enables people with hand dexterity issues, but something that is appealing to anyone – in this way the design doesn’t seem like an assistive device, but something desirable that someone might be using simply to stand out and be unique. Rotate the model around below to see all the details, particularly the spiral top.

If you like the Twisty Grip head over to the MyMiniFactory page to give it a like to increase my chances of winning the competition! Better yet, you can download this design for free and print it for yourself, or for someone you know who could benefit from it. As soon as the competition ends I’ll also post it to the other 3D printing file sites I normally use, but for now please help share this design and have some fun making it for yourself. Print in bold colours to stand out, or use different coloured materials to designate different pen colours – the choice is yours.

– Posted by James Novak

UPDATE 28/11/2016: The STL file to print this design is now also freely available on Thingiverse, Pinshape, 3D File Market and Cults. Enjoy!

Design a 3D Printed Snap-Fit Enclosure

20160623_Pine64 Enclosure

Today I’m pleased to share a tutorial that I’ve written for my new friends at Formlabs called “How to Design 3D Printed Snap Fit Enclosures.” Follow the link to read all the details, but in short, this tutorial will guide you through some of the important steps to designing your own custom enclosure suitable for 3D printing, and featuring a snap-fit detail so that you can easily open and close the enclosure without needing any tools. The tutorial is done using Solidworks, however you should be able to follow along no matter which 3D CAD software you use, even the free ones like 123D Design – the process and tips are exactly the same.

For this tutorial I used a PINE64, the famous $15 64bit computer funded on Kickstarter in 2015. The enclosure is designed to offer something unique and exciting to complement the computer, and of course take advantage of 3D printing. You can access all of the ports and features with the enclosure fitted, and there’s a great spot on top to store SD cards, USB sticks etc.

By the way, if you just want the enclosure without following the tutorial, of course I’ve uploaded the design to Pinshape, Thingiverse and Cults so you can download it and print it for yourself!

– Posted by James Novak

A 3D Printed Furry Bear (and a cat or 2)

20160505_3D Print Bear Cats

This is a real blast from the past – the bear pictured in the photos is actually from a Solidworks model that I created back in 2012, long before I had my own 3D printers. Today I dug it up and decided to breathe some life into the little guy using my Cocoon Create 3D printer – sometimes I almost feel like Frankenstein!

By complete accident, he’s printed out with a bit of fur down one side! This is just where a small support structure which was building to support his ear broke off (the support really wasn’t needed anyway), and therefore the small amount of plastic which was then extruding into thin air became joined when the nozzle went to the main model. But a pretty cool effect that I’m not going to clean off. I remember reading about some researchers who had perfected 3D printing hair, I wonder if this sort of happy accident inspired them?

 

The other 3D print is a simple download from Thingiverse of the Cuddling Cats by PixelMatter3D, just a fun little print when you want to give someone a gift. If you’ve followed my blog over the last year, you’ll probably notice it’s not the first time I’ve 3D printed a cat – check out this other Thingiverse cat I printed which can make a really cool lamp.

– Posted by James Novak

3D Printed SUP Paddle Lock

20151215 SUP Paddle Lock

With plenty of my designs available for you to download and make yourself on Thingiverse and Pinshape, this is officially the first product I’ve created through additive manufacturing for retail sale!

My local surf shop, Surf Connect, approached me with a unique problem: popular Stand Up Paddle (SUP) brand Ozoboard uses a snap-fit locking mechanism to allow for adjustment of the paddle length, but many customers have been losing them into the ocean. While it seems securely locked with the snap details onto the paddle shaft, somehow people just keep knocking them off, I guess because it is close to where people may be gripping the paddle with their hands. This is the grey part pictured in the middle image on the left.

A replacement part costs around $20 to buy, and to make things worse, the company making them is no longer able to supply them. So there are people stuck with paddles they can’t use because of this one small part. Well, as anyone who knows me would say, I’m up for any excuse to 3D print something new!

Some digital calipers, some Solidworks CAD software, and an hour or so of time is all it took to reverse engineer the lock details. The only trick is the metal pin which has been moulded into the original part, and takes all the forces of the 2 paddle shafts when they are locked in place. To do this as simply as possible I just used a screw with a matching diameter (a M6 x 12mm in 316 stainless steel) as shown in the top left image, gluing this with Araldite into place and concealing with a little cap. Other than the extra bulge to accommodate this, the 2 parts are identical.

Both parts were 3D printed on an Up! Plus 2 in about 50 minutes, and as you can see in the top right image, fits perfectly! Even I’m surprised that a) it fits first time, and b) it didn’t snap when popping around the paddle! The only thing yet to be seen is how well it holds up to use out on the water…

I will now be supplying these to Surf Connect exclusively to sell, since there is a genuine demand for them and no other way for people to get them. As a keen kitesurfer (and now SUPer with one of these Ozoboard paddles), I can imagine how annoying it is to be stuck on land when it’s perfect summer weather! If you need one, please get in touch. You can also download the design from Pinshape by clicking here.

– Posted by James Novak

Marvin the Martian Ray Gun – COMPLETE

20150717 Marvin Ray Gun

Finally, here it is! This is my version of Marvin the Martian’s Ray Gun from Looney Tunes, 3D printed as a prop for a costume. You can look back at the process of 3D printing and CAD modeling the design in my previous posts by clicking on the links. You can also download the files needed to 3D print your own for free from both Pinshape or Thingiverse depending on your platform of choice. I’m just that generous 😉

This definitely turned into a bigger job than expected with the size and quantity of parts required taking approximately 20 hours to print on my Up! Plus 2 printer. However by far the most challenging aspect was getting the glue and paint to dry in the hours before it was needed for the costume party! With it being the middle of winter, things just didn’t happen the way I expected, and I ended up using tape and clamps to hold things in place in front of a small heater right up until walking out of the door to the party. Note to self: don’t use super glue on paint that is still tacky, it just doesn’t work!

2015-07-07 16.15.15As you can see in this image, the surface flaws and layers really became obvious as soon as the undercoat went on. I instead bought a spray putty, applying about 3 coats to most of the parts before sanding them back to get a relatively smooth finish. A couple of the pieces even needed some filler just to hide some holes left from peeling away support or lifting slightly off the print plate, causing gaps when the pieces came together. Thankfully I had a helper on this one while I was busy performing the same process to my X-Men Cyclops goggles (which may be my next blog post – but you can see what they looked like just after printing in a previous post).

All-in-all a bit of fun, and great to add some novelty by having the moving trigger and dial on the back that determines the size of the KABOOM! Make sure you wedge these pieces into the body before gluing to achieve this movement – the exploded view of the parts in on both Pinshape and Thingiverse to see how it all comes together. Enjoy and remember, this is just a prop (we all know ‘3D printed guns‘ can cause a bit of a stir)!

– Posted by James Novak

Shattered Faceted Light

20150726 Faceted Light

As featured on Pinshape’s ‘Pick of the Week

You may have already seen, or even downloaded, my Lightbulb Lampshade which I created a while ago to give a new lease of life to an old Ikea lamp. Now I’ve create a new version to fit the competition criteria of the latest Pinshape Design Competition for a low-poly design. Of course this means you can also download the file for yourself completely free, just click here to download from Pinshape, or here for Thingiverse 🙂

20150726_143212The model was printed on an Up! Plus 2 3D printer, using the 0.2mm layer thickness and minimal support material. As you can see in the image to the left, there really was only a small amount of support material generated in the middle to support the top section, and this broke away very easily. You can also see a small break near the bottom where the printer must’ve bumped the model as it was printing, but thankfully it kept printing. Overall it took about 4 hours to print. If you’re planning on making one, the minimum diameter inside the design to fit over your light fixture and light-bulb is 31mm – if you need it larger, just scale up the design before printing.

Faceted Development

Above you can see the process of creating the 3D CAD model, this time challenging myself to use Rhino for the complete development rather than my usual Solidworks. This was to create the more complex form in a shorter amount of time. From left to right the process was:

  1. Use Revolve to create the light-bulb form.
  2. Convert this to a Mesh.
  3. Reduce Mesh to create the faceted effect.
  4. Use the Line tool to connect the points of the faceted mesh.
  5. Use the Pipe tool to add thickness to the lines.
  6. Add some solid sections to fill in some of the gaps, then Join all the pieces into a single mesh ready to export to STL.

If you make one please share your photos back on Pinshape or Thingiverse so I can check it out!

– Posted by James Novak

edditive now on Pinshape

150711 Pinshape

Just a quick announcement – my projects are now all available to download on Pinshape, providing more of you the opportunity to access, share and build them if this is your 3D printing community of choice. Of course these have always been available on my Thingiverse profile, however Pinshape seems to be an exciting new community with the added benefit of providing an import option directly from your Thingiverse account, making the merge of both platforms very easy. Unlike Thingiverse, you can also add prices to your designs if you like, although all of my free designs will always be free to download!

Thanks to Karen from Pinshape for persuading me to try them out!

– Posted by James Novak

Thingiverse Builds of my Designs

150610 ThingiverseIt seems like a good time to look back at some of the designs I’ve shared on Thingiverse, mostly over the last Xmas break when I actually had the spare time to make these sorts of things! It’s really cool to see people making things that you’ve created for yourself and getting some enjoyment from them!

The image on the left is not actually my design at all – it’s a kiteboard hydrofoil (basically a fancy attachment for a kitesurfing board that allows you to ‘hover’ above the water). @danleow did however take my standard kitesurfing fin (you can read all about my design and testing here or even download yourself a copy for free) and modify it to help in the creation of his hydrofoil (the blue 3D printed part). Very cool! I’m actually hoping to revisit this idea soon, after meeting Greg Mark from MarkForged at the RAPID 3D printing conference, and seeing his examples of surf fins 3D printed with carbon fiber, I am hoping it won’t be too long before my university buys on of their printers. I just know this will significantly strengthen the design and stop the fins breaking.

Next image is from @pcarlson of the replacement whisk for an Expressi Milk Frother – it’s such a small part that can be easily lost when cleaning, which is exactly what happened to me and inspired me to create the 3D file. Now I have an endless supply of replacements! Get yours and read my post about the design by clicking here.

Lastly is the most complex 3D print I’ve shared on Thingiverse simply for the quantity of parts and requirement to fit with timber. Not for the feint of heart! The idea was to create a Mario Kart trophy for a bit of fun with my family for Xmas. The one pictured is from @Johns_Monkey, and includes just the basic components for the trophy – if you look at my complete design, there are 7 extra pieces that can go around the outside and act as platforms to hold your Mario Kart characters.

I have a few other designs on Thingiverse for things like a Beer Bottle Lock and Phone Amplifier, if you happen to make any of these please add your photos onto Thingiverse 🙂 Happy 3D printing.

– Posted by James Novak

Let There Be Light

2015-01-26 Lightbulb LampMy first free giveaway for the new year! Click here to download the file ready to 3D print from Thingiverse.

I literally had an old Ikea lamp in my hands ready to throw away when I realised I could give it a whole new life with the help of 3D printing. My only real restriction was the volume of the Up! Plus 2 printer I’m using. You can see the original Ikea lamp in the images above, and process of transformation into something with (I think) much more personality. Projects like this are extremely satisfying as I hate to throw things away, and really demonstrates the opportunities to extend product longevity through 3D printing.

I’ve also taken some photos of the printing process so you can see the support material required. I knew this would be a bit painful and increase the print time, but while it looks like a lot the support is so thin that it really wasn’t too wasteful. I also have a feeling that there may be less support if I printed it upside down. If I need another one I’ll definitely try it out.

2015-01-26 Lamp TimelapseIf you make one I’d love to hear how it went and if you manage to print with less support. Just leave a comment here or through Thingiverse (along with photos). Happy printing!

– Posted by James Novak

3D Printed Arms for Sunglasses

2015-01-03 Sunglasses 1My Aviators never quite fit properly behind my ears, so of course with a 3D printer in the house it was time to design and 3D print my own! This is another fun, quick little project that you can easily make yourself as I have provided the files for free to download from Thingiverse. Just click here to get them 🙂

All you need to make your own are some wireframe glasses or sunnies (best for wire arms with a diameter of 1.5mm, although you could scale the print or simply drill the holes out to fit your frames). The only other important thing is to trim the arms off as in the middle image above, leaving 15mm that can fit into the corresponding holes of the 3D printed arms. This creates a secure fit when glued with Araldite. I printed my arms one-at-a-time to fit the small print plate of the ‘Up! Plus 2‘ 3D printer, but if you have a larger printer you should have no problems printing both arms at once. Each arm took 32minutes to print using the 0.15mm layer setting.

2015-01-03 Sunglasses 2I also recommend trying on the glasses before gluing – this allows you to angle the arms to fit securely behind the back of your ear as you can see in the above photos. I estimate mine are angled 20 degrees off vertical.

Would love to hear your feedback or photos if you make these, please share them here or through Thingiverse and let me know how you go.

– Posted by James Novak