Return of the Beer Bottle Lock

20170823 Beer Lock Blank

It’s been quite a few years since I first posted this design on my blog – check out where it all began here. One of the great things about sharing designs like this on file sharing websites like Thingiverse or Pinshape is that you get to see when someone enjoys your design and shares their own photos of the print, or even better, remixes it to add their own unique twist to the idea. Someone even made a video on Youtube which featured this lock 🙂

Occasionally I get requests, either on these websites, through social media, or on this blog, for me to make alterations to a design, or share the native design files for someone to more easily modify. 9 times out of 10 I’m more than happy to help. A few days ago I was contacted through Twitter to make a simple variation to my Beer Bottle Lock, removing the text on top that says “hands off my beer” to provide a blank surface for someone to more easily add their own custom text.

Given that the file is parametric in Solidworks, the alteration only took a few seconds. However rather than email the files direct, it seemed like a good opportunity to share a remix of my own design on Thingiverse, and hopefully benefit even more people. So you can now download this design for free by clicking here, just like the original.

This got me thinking about remixes, and the fact that many of my favourite 3D printing sites like Pinshape and Cults don’t really allow for remixes to be clearly linked to the original source file. I can either upload a print of a design (just photos, not a new STL file), or upload a completely new design. If I want to let people know this new design is a remix, I have to manually write this in the project description, and supply a URL to the original file as you can see on my upload of this new blank version beer bottle lock on Pinshape. On Thingiverse, you can specifically say your design is a remix of another with the click of a button, and a link is created so others can easily go to the original, and see all remixes to find the one most appropriate for them. This is a better system that ties in with the whole Creative Commons (CC) licencing used by all of these websites.

I hope some of these other file sharing websites will take up the challenge to make file attribution and remixing more transparent, it shouldn’t be left up to the user to understand the licensing options and manually enter this information. A common standard across a website, as done by Thingiverse, would really help encourage more sharing, and appropriate attribution to designers.

– Posted by James Novak

Advertisements

Mashup-Yoda – Download For Free

Yoda Header

Recently I wrote a step-by-step tutorial for my friends at Pinshape about how you can use free software (Meshmixer) to combine downloaded STL files into your own unique design – this is called a mashup, or a remix. The tutorial is nice and easy to follow, and was just the start of my plan to create some really interesting designs in a series of mashups. You can find a full video tutorial and links to the written tutorial in my previous post.

Finally I’ve found some time to create mashup number 2, Mashup-Yoda! This design has taken a lot more time to create in Meshmixer, along with learning some of the more advanced tools and plenty of trial-and-error along the way. However it is based on a similar idea as the Mashup-Rex from the tutorial, combining a skeleton element with an external skin to give a cutaway effect to the creature. However, what might Yoda’s skeleton look like?

Yoda's_death

As you (hopefully) know from the film Return of the Jedi, Yoda’s body vanishes as he becomes one with the force in his death, so there is no way to know. But upon finding the Voronoi Yoda model by Dizingof on Thingiverse, it seemed like an interesting concept for this powerful Jedi, perhaps a more organic internal skeleton that was formed by the Midi-chlorians (some real Star Wars nerd talk!) that gave Yoda his power.

Nerd talk aside, as much as anything the Voronoi Yoda just seemed like a cool model that would be fun to combine with a realistic bust of Yoda, also available freely on Thingiverse. The 2 models are a great fit, with the main challenge being the slicing and dicing of the geometry in Meshmixer to create this organic looking, almost cyborg-like Yoda mashup. Mostly this has been achieved using the Sculpt tools and the Select tool to remove sections of the models and re-shape them to look like they were designed this way from the beginning.

20170625_Mashup-Yoda

I’ll admit that I did have some problems combining the 2 models into a single STL file right at the end in Meshmixer, probably due to the weird intersections between the models where I had pushed and pulled surfaces too far into a non-manifold object. I also ended up with a file size of about 87MB, a bit ridiculous for sharing online, and the normal reduction techniques in Meshmixer were just destroying the quality of the surfaces. So I ended up bringing the large STL file into Rhinoceros, reducing the mesh by about 75%, exporting as a STL, importing back into Meshmixer, using the Inspector tool to repair any little remaining errors automatically, and finally exporting a clean, 3D printable STL file. That’s a mouthful!

Now that the hard work’s been done, I’d love you to have this model for free so you can print it out, or even get crazy and try remixing my remix using some of the techniques shown in my Pinshape tutorial! I’ve uploaded it to my favourite 3D file sharing websites Pinshape, Thingiverse, 3D File Market and Cults. Choose your website, 3D print and share some photos 🙂

May the force be with you

– Posted by James Novak

Enabled by 3D – Twisty Pen Grip

20160829_3D Print Pen Grip

It’s competition time at MyMiniFactory and I thought I’d use it as an excuse to spend an afternoon creating something new and simple to 3D print. The “#enabledby3d” competition brief calls for an “item that makes an everyday chore easier, or an enabling device, allowing those with disabilities greater accessibility.”

I decided to focus on something most of us take for granted – writing and drawing with a pen. If you have arthritis or some other sort of hand dexterity problems from injury or illness, picking up a cheap standard pen and using it can be frustrating, painful or even impossible. One option is to pay a lot more money for large diameter pens, or buy those slide-on grips which look ugly and draw attention to the fact that you may have grip difficulties.

So what I’ve created is a simple sheath that slides over the full length of a standard Bic pen or similar, significantly increasing the diameter of the pen and changing the geometry so that it may be more easily maneuvered. The sheath prints without needing any support material, and the cheap pen simply sides inside ready to use. What I hope is achieved by this design is something that not only enables people with hand dexterity issues, but something that is appealing to anyone – in this way the design doesn’t seem like an assistive device, but something desirable that someone might be using simply to stand out and be unique. Rotate the model around below to see all the details, particularly the spiral top.

If you like the Twisty Grip head over to the MyMiniFactory page to give it a like to increase my chances of winning the competition! Better yet, you can download this design for free and print it for yourself, or for someone you know who could benefit from it. As soon as the competition ends I’ll also post it to the other 3D printing file sites I normally use, but for now please help share this design and have some fun making it for yourself. Print in bold colours to stand out, or use different coloured materials to designate different pen colours – the choice is yours.

– Posted by James Novak

UPDATE 28/11/2016: The STL file to print this design is now also freely available on Thingiverse, Pinshape, 3D File Market and Cults. Enjoy!

Design a 3D Printed Snap-Fit Enclosure

20160623_Pine64 Enclosure

Today I’m pleased to share a tutorial that I’ve written for my new friends at Formlabs called “How to Design 3D Printed Snap Fit Enclosures.” Follow the link to read all the details, but in short, this tutorial will guide you through some of the important steps to designing your own custom enclosure suitable for 3D printing, and featuring a snap-fit detail so that you can easily open and close the enclosure without needing any tools. The tutorial is done using Solidworks, however you should be able to follow along no matter which 3D CAD software you use, even the free ones like 123D Design – the process and tips are exactly the same.

For this tutorial I used a PINE64, the famous $15 64bit computer funded on Kickstarter in 2015. The enclosure is designed to offer something unique and exciting to complement the computer, and of course take advantage of 3D printing. You can access all of the ports and features with the enclosure fitted, and there’s a great spot on top to store SD cards, USB sticks etc.

By the way, if you just want the enclosure without following the tutorial, of course I’ve uploaded the design to Pinshape, Thingiverse and Cults so you can download it and print it for yourself!

– Posted by James Novak

A 3D Printed Furry Bear (and a cat or 2)

20160505_3D Print Bear Cats

This is a real blast from the past – the bear pictured in the photos is actually from a Solidworks model that I created back in 2012, long before I had my own 3D printers. Today I dug it up and decided to breathe some life into the little guy using my Cocoon Create 3D printer – sometimes I almost feel like Frankenstein!

By complete accident, he’s printed out with a bit of fur down one side! This is just where a small support structure which was building to support his ear broke off (the support really wasn’t needed anyway), and therefore the small amount of plastic which was then extruding into thin air became joined when the nozzle went to the main model. But a pretty cool effect that I’m not going to clean off. I remember reading about some researchers who had perfected 3D printing hair, I wonder if this sort of happy accident inspired them?

 

The other 3D print is a simple download from Thingiverse of the Cuddling Cats by PixelMatter3D, just a fun little print when you want to give someone a gift. If you’ve followed my blog over the last year, you’ll probably notice it’s not the first time I’ve 3D printed a cat – check out this other Thingiverse cat I printed which can make a really cool lamp.

– Posted by James Novak

3D Printed SUP Paddle Lock

20151215 SUP Paddle Lock

With plenty of my designs available for you to download and make yourself on Thingiverse and Pinshape, this is officially the first product I’ve created through additive manufacturing for retail sale!

My local surf shop, Surf Connect, approached me with a unique problem: popular Stand Up Paddle (SUP) brand Ozoboard uses a snap-fit locking mechanism to allow for adjustment of the paddle length, but many customers have been losing them into the ocean. While it seems securely locked with the snap details onto the paddle shaft, somehow people just keep knocking them off, I guess because it is close to where people may be gripping the paddle with their hands. This is the grey part pictured in the middle image on the left.

A replacement part costs around $20 to buy, and to make things worse, the company making them is no longer able to supply them. So there are people stuck with paddles they can’t use because of this one small part. Well, as anyone who knows me would say, I’m up for any excuse to 3D print something new!

Some digital calipers, some Solidworks CAD software, and an hour or so of time is all it took to reverse engineer the lock details. The only trick is the metal pin which has been moulded into the original part, and takes all the forces of the 2 paddle shafts when they are locked in place. To do this as simply as possible I just used a screw with a matching diameter (a M6 x 12mm in 316 stainless steel) as shown in the top left image, gluing this with Araldite into place and concealing with a little cap. Other than the extra bulge to accommodate this, the 2 parts are identical.

Both parts were 3D printed on an Up! Plus 2 in about 50 minutes, and as you can see in the top right image, fits perfectly! Even I’m surprised that a) it fits first time, and b) it didn’t snap when popping around the paddle! The only thing yet to be seen is how well it holds up to use out on the water…

I will now be supplying these to Surf Connect exclusively to sell, since there is a genuine demand for them and no other way for people to get them. As a keen kitesurfer (and now SUPer with one of these Ozoboard paddles), I can imagine how annoying it is to be stuck on land when it’s perfect summer weather! If you need one, please get in touch. You can also download the design from Pinshape by clicking here.

– Posted by James Novak

Marvin the Martian Ray Gun – COMPLETE

20150717 Marvin Ray Gun

Finally, here it is! This is my version of Marvin the Martian’s Ray Gun from Looney Tunes, 3D printed as a prop for a costume. You can look back at the process of 3D printing and CAD modeling the design in my previous posts by clicking on the links. You can also download the files needed to 3D print your own for free from both Pinshape or Thingiverse depending on your platform of choice. I’m just that generous 😉

This definitely turned into a bigger job than expected with the size and quantity of parts required taking approximately 20 hours to print on my Up! Plus 2 printer. However by far the most challenging aspect was getting the glue and paint to dry in the hours before it was needed for the costume party! With it being the middle of winter, things just didn’t happen the way I expected, and I ended up using tape and clamps to hold things in place in front of a small heater right up until walking out of the door to the party. Note to self: don’t use super glue on paint that is still tacky, it just doesn’t work!

2015-07-07 16.15.15As you can see in this image, the surface flaws and layers really became obvious as soon as the undercoat went on. I instead bought a spray putty, applying about 3 coats to most of the parts before sanding them back to get a relatively smooth finish. A couple of the pieces even needed some filler just to hide some holes left from peeling away support or lifting slightly off the print plate, causing gaps when the pieces came together. Thankfully I had a helper on this one while I was busy performing the same process to my X-Men Cyclops goggles (which may be my next blog post – but you can see what they looked like just after printing in a previous post).

All-in-all a bit of fun, and great to add some novelty by having the moving trigger and dial on the back that determines the size of the KABOOM! Make sure you wedge these pieces into the body before gluing to achieve this movement – the exploded view of the parts in on both Pinshape and Thingiverse to see how it all comes together. Enjoy and remember, this is just a prop (we all know ‘3D printed guns‘ can cause a bit of a stir)!

– Posted by James Novak

Shattered Faceted Light

20150726 Faceted Light

As featured on Pinshape’s ‘Pick of the Week

You may have already seen, or even downloaded, my Lightbulb Lampshade which I created a while ago to give a new lease of life to an old Ikea lamp. Now I’ve create a new version to fit the competition criteria of the latest Pinshape Design Competition for a low-poly design. Of course this means you can also download the file for yourself completely free, just click here to download from Pinshape, or here for Thingiverse 🙂

20150726_143212The model was printed on an Up! Plus 2 3D printer, using the 0.2mm layer thickness and minimal support material. As you can see in the image to the left, there really was only a small amount of support material generated in the middle to support the top section, and this broke away very easily. You can also see a small break near the bottom where the printer must’ve bumped the model as it was printing, but thankfully it kept printing. Overall it took about 4 hours to print. If you’re planning on making one, the minimum diameter inside the design to fit over your light fixture and light-bulb is 31mm – if you need it larger, just scale up the design before printing.

Faceted Development

Above you can see the process of creating the 3D CAD model, this time challenging myself to use Rhino for the complete development rather than my usual Solidworks. This was to create the more complex form in a shorter amount of time. From left to right the process was:

  1. Use Revolve to create the light-bulb form.
  2. Convert this to a Mesh.
  3. Reduce Mesh to create the faceted effect.
  4. Use the Line tool to connect the points of the faceted mesh.
  5. Use the Pipe tool to add thickness to the lines.
  6. Add some solid sections to fill in some of the gaps, then Join all the pieces into a single mesh ready to export to STL.

If you make one please share your photos back on Pinshape or Thingiverse so I can check it out!

– Posted by James Novak

edditive now on Pinshape

150711 Pinshape

Just a quick announcement – my projects are now all available to download on Pinshape, providing more of you the opportunity to access, share and build them if this is your 3D printing community of choice. Of course these have always been available on my Thingiverse profile, however Pinshape seems to be an exciting new community with the added benefit of providing an import option directly from your Thingiverse account, making the merge of both platforms very easy. Unlike Thingiverse, you can also add prices to your designs if you like, although all of my free designs will always be free to download!

Thanks to Karen from Pinshape for persuading me to try them out!

– Posted by James Novak

Thingiverse Builds of my Designs

150610 ThingiverseIt seems like a good time to look back at some of the designs I’ve shared on Thingiverse, mostly over the last Xmas break when I actually had the spare time to make these sorts of things! It’s really cool to see people making things that you’ve created for yourself and getting some enjoyment from them!

The image on the left is not actually my design at all – it’s a kiteboard hydrofoil (basically a fancy attachment for a kitesurfing board that allows you to ‘hover’ above the water). @danleow did however take my standard kitesurfing fin (you can read all about my design and testing here or even download yourself a copy for free) and modify it to help in the creation of his hydrofoil (the blue 3D printed part). Very cool! I’m actually hoping to revisit this idea soon, after meeting Greg Mark from MarkForged at the RAPID 3D printing conference, and seeing his examples of surf fins 3D printed with carbon fiber, I am hoping it won’t be too long before my university buys on of their printers. I just know this will significantly strengthen the design and stop the fins breaking.

Next image is from @pcarlson of the replacement whisk for an Expressi Milk Frother – it’s such a small part that can be easily lost when cleaning, which is exactly what happened to me and inspired me to create the 3D file. Now I have an endless supply of replacements! Get yours and read my post about the design by clicking here.

Lastly is the most complex 3D print I’ve shared on Thingiverse simply for the quantity of parts and requirement to fit with timber. Not for the feint of heart! The idea was to create a Mario Kart trophy for a bit of fun with my family for Xmas. The one pictured is from @Johns_Monkey, and includes just the basic components for the trophy – if you look at my complete design, there are 7 extra pieces that can go around the outside and act as platforms to hold your Mario Kart characters.

I have a few other designs on Thingiverse for things like a Beer Bottle Lock and Phone Amplifier, if you happen to make any of these please add your photos onto Thingiverse 🙂 Happy 3D printing.

– Posted by James Novak