The Meshmixer Mashup: Mashup-Rex!

Tutorial Meshmixer Mashup

The mashup is a favourite technique in the music world that combines two or more songs together into a single song. They might be from completely different eras or genres and when cleverly mashed together, they create a new smash hit. But did you know that creating a 3D printable mashup is just as easy as creating a musical one? Take a bit of File A, mix it with File B, and you now have your own creative design.

Over the last few weeks I’ve been putting together a new tutorial for my friends at Pinshape, which includes my first video tutorial as well as the usual step-by-step process to follow along with. Click here to learn how to mashup STL files in only 10 easy steps using the freely available software Autodesk Meshmixer.

The mashup is often called a Remix in the 3D printing world, and is a great way to build upon other designs and add your own creative touch, or re-purpose a design for a new application. The video tutorial is a real-time look at the process, which with a bit of practice, will have you remixing new designs in a matter of minutes. If you want to follow along, you just need to install Meshmixer on your computer, and download the 2 T-Rex files used in this tutorial which are free on Pinshape:

  1. Low Poly T-Rex by steven_dakh
  2. The T-Rex Skull by harry (we are only using the head piece, not the jaw)

Mashup-Rex

Alongside the tutorial is my latest design, the Mashup-Rex. I have made this available for free on Pinshape, just click here to download the file. Maybe you you will create your own remix of my remix? If you do, or you just 3D print the Mashup-Rex for yourself, please share it on Pinshape to add to the community and see how far the design can go! In the version pictured above I simply used a coffee stain to “age” the skull, similar to my previous print of the Star Wars Deathtrooper. I’m enjoying this simple technique at the moment, although you may like to use a 2-tone print, or go all out with some painted effects.

Happy mixing!

– Posted by James Novak

From Sketch to 3D Print

Sketch to 3D Print

Designing your own 3D printable object can be daunting if you’ve never used a 3D CAD program before. This is a challenge that one of my university classes is facing, with most of the students new to 3D design, but eager to begin experimenting with 3D printing. So this week we explored a workflow that allows them to take their hand-drawn sketches through a couple of simple processes, resulting in a 3D printable file, without having to model in 3D from scratch. So here it is just for you – follow along and let me know how you go.

Step 1: The Sketch

biro sketches

This is the easy part! Find a sketch that you’d like to turn 3D. It’s best if it’s drawn clearly in pen, so if your sketches are in pencil just trace over them on a fresh sheet of paper. For this example I’m borrowing a sketch from online. You must then digitise your sketch – best using a flatbed scanner, or take a photo in good lighting conditions so you get good contrast between your linework and paper.

Step 2: Vectorising

Illustrator Tracing

We are going to use Adobe Illustrator to automatically trace the outlines of our sketch. Place your sketch into a new document, and you will see a “Live Trace” or “Image Trace” button appear (depending on your version of Illustrator) near the top menu. You may find that one of the preset options will give you an accurate tracing, or you will need to get into the options and start tweaking the settings. I have an older version of Illustrator, but the settings that work for me are shown above. What you are looking to achieve is a good level of detail, and nice closed lines. Once you have a good result, you can use the “Expand” button to turn the result into individual lines that can be selected. You can also go to the menu and select Object>Ungroup so that your linework is no longer all grouped together as a single item.

Step 3: Exporting

Illustrator SVG

If you have a collection of sketches like this example, you will want to now Save your file (so you can come back to it and make changes later on), and then delete everything from the file that you don’t want to turn 3D. For this example, I have just left the flower tracing that was in the top-right corner. Go to File>Save As and save this drawing as a SVG file. This is a 2D drawing format that will be recognised by our 3D software.

Step 4: Going 3D

For this example we are going to use the freely available 3D software Tinkercad – one of the best features being that it runs from your internet browser, no need to download and install anything. I recommend it as a great place to start your 3D modelling journey, however if you’re already using a more advanced 3D CAD program you can still follow along with this tutorial – the process will be quite similar.

Tinkercad Import SVG

Create a new Tinkercad file, and at the top right of the workspace is the “Import” button – select your SVG file and it will automatically be turned into a 3D object as shown above. Depending on your sketch and requirements, this might be all you need to do and you can jump straight ahead to Step 7: Exporting. However I want to make some modifications to this design now that I have a good starting point in 3D.

Step 5: Modification

Tinkercad Cut

For my needs this object is too thick – I only want it to be 2mm tall. In the right panel of objects is a translucent box – this box is like a cutting tool, anywhere it touches my 3D object it can be used to cut away at it. Place a box in the middle of your 3D model, and use the Length and Width sliders to fully enclose your 3D model. Lastly, rotate your model to a side view and you will see an arrow pointing up or down – click-and-drag on this to move the box up 2mm above the workplane.

Now select both the 3D model and the box (either click-and-drag a selection box around the workplane or hold the Shift button and select both objects) and you will notice at the top right the Group icon becomes available. Click on this and Tinkercad will subtract the box from the 3D model, leaving just a 2mm thick object.

Step 6: Patterning

Tinkercad Pattern Duplicate

Rather than just printing one of this design, I want to create a more complex pattern. Firstly I need to scale the design down so that it’s a bit smaller. Do this by clicking on the object, holding the Shift button and using the corner handles to click-and-drag the object down in size – mine is about 40x40mm.

With my object selected, at the top left of the window are the standard Copy and Paste actions, as well as the Duplicate option – this is the option I use to make copies. It may copy the object in the exact same position as the original, so when you click Duplicate just click-and-drag this copy out into a new position. Repeat as many times as you like to create a pattern.

When you’re happy with the design, you will need to join all of these individual elements together into a single object. Similar to step 5, select all the objects together and the Group button will become active – however because all of these objects are solids, the Group function will join them together rather than cutting away.

Step 7: Exporting

When your design is complete, use the Export function at the top right of the window to download the object to your computer. The STL option is most likely what you will want for 3D printing. The STL format is the standard file type for all 3D printers.

Step 8: 3D Printing

Up Plus 2 Pattern

Finally you can load your STL into your 3D printing or slicing software and 3D print! If the print doesn’t give you the result you want you can either go back to the Tinkercad file and make some more modifications in 3D, or take a step further back to Illustrator and modify the original linework.

The process is not perfect or overly accurate, however for designs like fashion or simple experiments, this can be a good workflow to try if you’re better/faster at drawing by hand than modelling directly in 3D software. If anyone has some different workflows they enjoy using, please feel free to share them in the comments section 🙂

– Posted by James Novak

Repairing 3D Prints with a 3D Pen

20161216_3doodler-repair

It’s been a while since I last played with my 3Doodler Pen to repair a broken 3D print – the results were pretty cool, although it takes some practice to get reasonable results. Check out the post and images here. Some people make pretty amazing sculptures with the pen, however I find the real value in using the pen to fill gaps created by warped 3D prints and fix other cosmetic problems.

One of my latest projects is assembled from 16 separate pieces printed on my Cocoon Create 3D printer (60 hours worth of printing!), and inevitably with such large pieces printed using desktop FDM technology, there are some gaps caused by print warping. Most of them are reasonably small, but some like the ones shown above and below are quite large. Unfortunately the 3Doodler uses 3mm filament, meaning that I couldn’t use the same 1.75mm filament used to print the parts to begin with, but given that this project doesn’t need to be cosmetically pretty (prototype only), a different shade of yellow that came in the box will do.

20161214_3doodler-repair

The first step is of course to use the pen to extrude material into the cavity, ensuring to move slowly and use the hot nozzle to bond the new plastic with the original. It can get a bit messy and smelly (do it in a well ventilated area – I had a fan blowing to keep a lot of the fumes moving away, but there were times my eyes were stinging), and as shown in image 2 above, might look a bit rough, but that’s OK. You can go back over some of the rough patches using the side of the hot nozzle to try and smooth them out, not extruding any material but using the nozzle like a hot rolling pin. This technique is also great for blending some of the sharp edges or smaller gaps that don’t really need to be filled. The final step is to use a metal file to clean things up, giving a much smoother finish.

Admittedly this process wasn’t all smooth sailing, my 3Doodler kept getting clogged despite me taking it apart and cleaning it out – I have a feeling it might be the material quality and/or the temperature of the nozzle not being quite as hot as it needs to be, so a lot of time was wasted trying to manually push the filament through the pen and get a steady flow. I did notice that when I pushed the hot nozzle into my original print (the darker yellow plastic) it melted much quicker than the 3Doodler filament, despite them both being ABS. So material quality is likely the cause. But the final result is worth the pain, gaps are cleaned up nicely and the surface is nice and smooth. Time for some testing!

– Posted by James Novak

3D Printed “Marshmallow Challenge”

collage

Have you ever done the Marshmallow Challenge? Chances are you’ve done something similar at school, or if you’ve ever been to a team building workshop it’s a pretty popular creative exercise. Basically teams must build the tallest freestanding structure they can in 18 minutes using 20 sticks of spaghetti, a yard of tape, a yard of string and 1 marshmallow on top. Tom Wujec has been running these challenges for many years and presented a great TED talk if you want to find out more about the challenge and what can be learned from it.

Well now I’ve put my 3D printing twist onto the challenge, running what turned into a very competitive series of workshops for the Intro to 3D Printing course at my university. Teams were given a selection of materials we had readily available for model making (20 paddlepop sticks, 1 paper plate, 2 paper cups, a few drinking straws, a length of masking tape and a length of string) and given a very simple brief – build the tallest freestanding structure possible during the 2 hour workshop. The catch:

Teams were each given an UP Plus 2 3D printer and laptop with Solidworks, and could print as much as they wanted to help build the structure.

Now that makes things interesting! These are first year students only new to CAD and 3D printing, so what can they both design and print in such a limited time? Do you print lots of small things, or 1 big thing? How can you tweak the 3D print settings to get things printed as quickly as possible? What do you do when your print doesn’t work? It turns out that this challenge can teach you a lot about 3D printing, and how to rapidly test, prototype and build without wasting any time like in the normal 6 week projects.

As you can see from the photos, the results are very impressive! The winning team built a structure up to 249cm, which basically meant they used all the materials end-to-end and could not go much higher even if they had more time. This team 3D printed small little rectangular connectors for the paddlepop sticks, and with a lot of delicate balancing, managed to get their structure stable at the very last second. Much much higher than I expected when I set this challenge! They were in a very close battle with the team that came second for the day, reaching 238cm with a slightly different connection method where they used 3D printing to connect the paddlepop sticks to the cups. What you might notice with the top 3 teams is that 3D printing was used for small connecting elements that could be quickly printed, whereas some of the other teams (eg. 4th place who I only have a photo of part of the structure) were 3D printing much larger bases and simply ran out of time to push their structures quite as high.

All of the students were very involved and motivated by this task, it’s something I will run again in future classes and 3D printing workshops as a way to push the limits of the 3D printers and break them out of being so precious about what comes off the printers. It also gets them thinking about how to combine 3D printing with other methods of prototyping, you don’t necessarily need to 3D print every part of your design as it’s quite a slow process, particularly for FDM machines. Feel free to make your own twists on this challenge in the classroom, and I’d love to see your results! Maybe the 3D Printed Marshmallow Challenge will be the next big thing?

– Posted by James Novak

When Layer Orientation Matters

20160819_Meshmixer Plane Cut

Often when you are 3D printing the main thing you think about is how much support material your print will have, and you orient your print to minimise this – reducing material waste, print time and any manual post-processing to clean up the print. However sometimes the best print orientation for these reasons is not the best for mechanical strength, and I’ve just discovered this with one of the parts for the InMoov robotic arm I’m currently building (see the first collection of 3D prints in my previous post).

The “RobServoBedV6” part is where the 5 servo’s connect that control the individual finger movements, using screws to fix them in place. However some of the stands are splitting as I screw into them as shown in the photo above due to the layer orientation. Yes I could use super glue to fix them, but the split will just happen  somewhere else. So I’m going to completely cut the stands away from the part, and re-print just these stands in a different orientation to improve their strength. This is where the free program Meshmixer comes in very handy, and I’ve previously published a few examples of how to use it for my friends at Pinshape – just click here to find out more.

In the top right image you can see the first step of using Meshmixer to edit the STL file. I have used the Plane Cut tool to slice away the bottom plate, and then repeat the process to remove the other 2 segments which seem to be strong enough for the screws at the moment. This leaves me with the 2 stands that I’m having issues with. These can now be exported as STL’s ready to 3D print (orientation is not important here, this will be set in my 3D print software).

Cura from Meshmixer

I’m printing these parts as we speak on my Cocoon Create 3D printer, and have used Cura to prepare the parts and get the G-code. As you can see to the left, I have oriented the parts so that the layers are perpendicular to the original orientation, meaning that when I screw into them, the force from the screw will not pull the layers apart. Super glue will hold these replacements onto the original part really well as they are printed in ABS.

If you are designing your own parts from scratch in CAD and intend to screw directly into them, keep this issue in mind. However if you’re downloading a STL where modification isn’t as easy, knowing this simple trick in Meshmixer can really help you repair and improve a part rather than trying to re-print it from scratch and potentially use a lot of support material in a different orientation.

– Posted by James Novak

Design a 3D Printed Snap-Fit Enclosure

20160623_Pine64 Enclosure

Today I’m pleased to share a tutorial that I’ve written for my new friends at Formlabs called “How to Design 3D Printed Snap Fit Enclosures.” Follow the link to read all the details, but in short, this tutorial will guide you through some of the important steps to designing your own custom enclosure suitable for 3D printing, and featuring a snap-fit detail so that you can easily open and close the enclosure without needing any tools. The tutorial is done using Solidworks, however you should be able to follow along no matter which 3D CAD software you use, even the free ones like 123D Design – the process and tips are exactly the same.

For this tutorial I used a PINE64, the famous $15 64bit computer funded on Kickstarter in 2015. The enclosure is designed to offer something unique and exciting to complement the computer, and of course take advantage of 3D printing. You can access all of the ports and features with the enclosure fitted, and there’s a great spot on top to store SD cards, USB sticks etc.

By the way, if you just want the enclosure without following the tutorial, of course I’ve uploaded the design to Pinshape, Thingiverse and Cults so you can download it and print it for yourself!

– Posted by James Novak

Brimming with Success

20160712_3D Print Brim

Excuse the headline pun, but this post is all about 3D printing using a brim, which evidently can really improve your success rate with large flat surfaces.

For those not familiar with a brim, it’s an option in some 3D print software (such as Cura) that lays down an extra width of material around your object and attached to it, one or two layers tall. You can see the brim around my enclosure in the top left image. Essentially this extra material creates a stronger bond to the build plate, helping to fight the contracting forces of the cooling plastic that can commonly cause warping. Of course there are many other ways to combat this, including laying down some glue or adhesive spray, printing the part in a different orientation, or using an enclosure to keep the print warmer so there is less warping from rapidly cooling plastic. However these aren’t always an option, so using a brim can be a really effective solution that only wastes a very small amount of extra material.

In the top right image you can see my first attempt at printing this enclosure half, which is very clearly warped as the outer edges lifted up from the plate under the contracting forces of the cooling plastic. Support material was used, but nothing else. In contrast, you can see the middle image which is the end result once the brim from the left image was removed – perfectly horizontal! This is really important for this design since it is one half of an enclosure, and the warped version simply won’t fit properly with the other half.

20160712 CuraIt’s certainly not something needed for every print, but for large surfaces it’s proving to be very successful. If you’ve had similar problems with warping and haven’t tried a brim yet, it’s worth giving a go – you can see where to access this setting if you are using Cura on the left, very easy, or if you are using another program to slice and print, have a look through your settings. The raft is another option you may have used, however the raft builds up a lot more material underneath your entire object which is wasted. It can also be a good option though, especially if you are using a printer like the Up Plus 2 which does not have the option of printing a brim but will do a good job with a raft.

– Posted by James Novak

Goodbye 3D Printing, Hello 4D Printing

Many people I talk to at events and workshops are only just catching on to this whole 3D printing thing, but did you know some of the exciting research in this field has already moved on to the next dimension – literally?

4D printing might sound a bit weird and wacky, but it basically just means something that has been 3D printed, but changes its shape afterwards since time is the fourth dimension. So a 3D print that changes over time. Skylar Tibbits from MIT is really one of the pioneers of such a concept, so if you want to wrap your head around the concept this link to his Self-Assembly Lab at MIT will have some more videos to explain what it means. Having spent some time lately writing about 4D printing for part of my PhD, I thought it was time to give it a go, taking inspiration from the Active Shoes created by the Self-Assembly Lab.

As you can see from my very rough video, it’s actually quite easy to do. All I did was create a few concentric circles in CAD with a 0.2mm thickness so that they would print only 1 layer thick on my Cocoon Create 3D printer. I then stretched some material (from an old pair of stockings – not mine I swear!) over the base plate and held it in place with clips. A slight adjustment to the height of the base plate to make room for this material and 1 minute later it was done.

20160628_4D Print

The result is really cool (I think) for something that only took 1 minute to print. It’s certainly not perfect, but shows a lot of opportunity for the future of fashion design. If you wanted to only use 3D printing to create this shape it would easily take 20 minutes or more on a standard FDM printer, so I think some more experimentation is required.

– Posted by James Novak

WTF, a low-poly goat?

20160322_3D Print Trophy

Yes, a low-poly goat. A few in fact.

These are 2 trophies that I’ve 3D printed for my second year class at Griffith University as awards for their current project designing lights for Yellow Goat. Nothing beats getting the students to work on real projects with industry, and adding an extra incentive with these trophies adds an extra competitive level and of course bragging rights for the winners! If you look back to one of the largest 3D printing projects I’ve tacked using desktop machines, the Mario Kart Trophy, you’ll see it’s not the first time I’ve used 3D printing to create a custom trophy. It’s turning out to be a great application of 3D printing since you can get really creative and produce them very cheaply (I wonder if trophy manufacturers are using 3D printing?). On the left is the trophy for the best design as picked by the team from Yellow Goat, and the trophy on the right is for the best team leader, chosen by averaging the marks of all team members and finding which team overall has the highest marks.

20160323_Rhino Low Poly

The 3D CAD modelling of this design was not as straight forward as most of the other designs on my website, so here is my workflow in case you’d like to try something similar (you don’t need the same software, just to understand the process):

  1. Trace the outline of the Yellow Goat logo (shown above right) in Adobe Illustrator. Export as a .dxf file, providing accurate 2D line-work to use in the 3D CAD model (you could just bring the image directly into your CAD software if you prefer).
  2. Import the .dxf file into Solidworks. Use this line-work to base your 3D modeling off. I also created some guide lines to ensure that my model would fit onto my desktop 3D printer without needing to scale later.
  3. Export the final model from Solidworks as a .IGS file.
  4. Import the .IGS file into Rhino. The model in the image above on the left is the imported model from Solidworks (yes you could just model the design in Rhino to begin with, however I knew I could get to this point much faster in Solidworks).
  5. Use the “Reduce Mesh” tool in Rhino to reduce the number of faces of the mesh. I reduced mine by about 93%, resulting in the low-poly model shown above. It’s also possible to do this type of low-poly conversion using the free software MeshLab, just click here to read one of my previous posts about how to do this.
  6. Because 93% is a huge reduction, the resulting mesh did have some gaps where the software didn’t know what to do, so was not watertight (manifold) and ready to 3D print. I manually cleaned up some of the edges and added some surfaces to fix this issue.
  7. Export as .stl and 3D print!

20160321_Yellow Goat

As you can see I still ended up splitting the large goat piece in order to minimise support material, printing the body piece upside down with the legs in the air and gluing the head back on later. It took a few prints to get the smaller goat right, the middle image above showing some of the messy surfaces I was getting from the Up! Plus 2 printer I used, surprising since it’s normally very good. The ABS seemed a little more sticky than normal as well, meaning the support material didn’t just peel away but had to be scraped and cut, making more of a mess. But third time lucky! I also downloaded the human figure from Thingiverse to again save some time, and it gives the effect I wanted anyway. A bit of chrome spray paint, a chipboard base and voila!

Check out the 3D model above for the full effect of the low-poly design!

– Posted by James Novak