From bespoke seats to titanium arms, 3D printing is helping Paralympians gain an edge

Jeff Crow/AAP Image

Authors: James Novak, The University of Queensland | Andrew Novak, The University of Technology Sydney

** Please note: this is a copy of an article I wrote for The Conversation, published on 3rd September, 2021, and is shared under a CC-BY-ND license. You can access the original article by clicking here.**

Major sporting events like the Paralympics are a breeding ground for technological innovation. Athletes, coaches, designers, engineers and sports scientists are constantly looking for the next improvement that will give them the edge. Over the past decade, 3D printing has become a tool to drive improvements in sports like running and cycling, and is increasingly used by paralympic athletes.

The Paralympics features athletes with a diverse range of abilities, competing in a wide range of different categories. Many competitors use prosthetics, wheelchairs or other specialised components to enable them to perform at their best.

One interesting question is whether 3D printing widens or narrows the divide between athletes with access to specialised technologies, and those without. To put it another way, does the widespread availability of 3D printers — which can now be found in many homes, schools, universities and makerspaces — help to level the playing field?

Forget mass production

Mass-manufactured equipment, such as gloves, shoes and bicycles, is generally designed to suit typical able-bodied body shapes and playing styles. As such, it may not be suitable for many paralympians. But one-off, bespoke equipment is expensive and time-consuming to produce. This can limit access for some athletes, or require them to come up with their own “do-it-yourself” solutions, which may not be as advanced as professionally produced equipment.

3D printing can deliver bespoke equipment at a more affordable price. Several former paralympians, such as British triathlete Joe Townsend and US track athlete Arielle Rausin, now use 3D printing to create personalised gloves for themselves and their fellow wheelchair athletes. These gloves fit as if they were moulded over the athlete’s hands, and can be printed in different materials for different conditions. For example, Townsend uses stiff materials for maximum performance in competition, and softer gloves for training that are comfortable and less likely to cause injury.

3D-printed gloves are inexpensive, rapidly produced, and can be reprinted whenever they break. Because the design is digital, just like a photo or video, it can be modified based on the athlete’s feedback, or even sent to the nearest 3D printer when parts are urgently needed.

Read more: Paralympians still don’t get the kind of media attention they deserve as elite athletes

Harder, better, faster, stronger

An elite athlete might be concerned about whether 3D-printed parts will be strong enough to withstand the required performance demands. Fortunately, materials for 3D printing have come a long way, with many 3D printing companies developing their own formulas to suit applications in various industries – from medical to aerospace.

Back in 2016, we saw the first 3D-printed prosthetic leg used in the Paralympics by German track cyclist Denise Schindler. Made of polycarbonate, it was lighter than her previous carbon-fibre prosthetic, but just as strong and better-fitting.

With research showing sprint cyclists can generate more than 1,000 Newtons of force during acceleration (the same force you would feel if a 100-kilogram person were to stand on top of you!), such prosthetics need to be incredibly strong and durable. Schindler’s helped her win a bronze medal at the Tokyo games.

Denise Schindler on her way to a medal in Tokyo. Thomas Lovelock

More advanced materials being 3D printed for Paralympic equipment include carbon fibre, with Townsend using it to produce the perfect crank arms for his handbike. 3D printing allows reinforced carbon fibre to be placed exactly where it is needed to improve the stiffness of a part, while remaining lightweight. This results in a better-performing part than one made from aluminium.

3D-printed titanium is also being used for custom prosthetic arms, such as those that allow New Zealand paralympian Anna Grimaldi to securely grip 50kg weights, in a way a standard prosthetic couldn’t achieve.

Different technologies working together

For 3D printing to deliver maximum results, it needs to be used in conjunction with other technologies. For example, 3D scanning is often an important part of the design process, using a collection of photographs, or dedicated 3D scanners, to digitise part of an athlete’s body.

Such technology has been used to 3D-scan a seat mould for Australian wheelchair tennis champion Dylan Alcott, allowing engineers to manufacture a seat that gives him maximum comfort, stability and performance.

3D scanning was also used to create the perfect-fitting grip for Australian archer Taymon Kenton-Smith, who was born with a partial left hand. The grip was then 3D-printed in both hard and soft materials at the Australian Institute of Sport, providing a more reliable bow grip with shock-absorbing abilities. If the grip breaks, an identical one can be easily reprinted, rather than relying on someone to hand-craft a new one that might have slight variations and take a long time to produce.

Read more: 3 reasons why Paralympic powerlifters shift seemingly impossible weights

All these technologies are increasingly accessible, meaning more non-elite athletes can experiment with unique parts. Amateurs and professionals alike can already buy running shoes with 3D-printed soles, and 3D-printed custom bike frames. For those with access to their own 3D printer, surf finscycling accessories and more can be downloaded for free and printed for just a few dollars.

However, don’t expect your home 3D printer to be making titanium parts anytime soon. While the technology is levelling the playing field to a certain extent, elite athletes still have access to specialised materials and engineering expertise, giving them the technological edge.

This article was co-authored by Julian Chua, a sports technology consultant at ReEngineering Labs and author of the Sports Technology Blog.

Customising Surf Fins for 3D Printing

Early followers of this blog may be familiar with several projects to 3D print kiteboard and stand up paddle (SUP) board fins, including some fins you can freely download if you’re into kitesurfing. It’s been a little while between posts on this topic, however, I have been busy in the background producing a system to help people with no CAD experience design and customise their own fins ready for 3D printing. The full details have just been published in the Computer-Aided Design and Applications Journal.

Quite a few people have used 3D printing to produce surf fins – after all, it’s very cheap and means you can produce just about any geometry you like. Researchers have looked at the strength of different materials and 3D printing technologies for this application, as well as the performance (fluid dynamics) of different geometries. However, if you are not a relatively advanced CAD user, it is unlikely you will be able to design the fin of your dreams, no matter how awesome the research suggests 3D printing can be! This is what I was interested in solving.

Using Rhinoceros and Grasshopper, the complexity of a fin was condensed down to a series of limited controls that allowed for freeform experimentation. The above image is the interface that allows surfers to customise a fin design in real-time. It is based on a handful of common fin properties such as the fin system, fin position on the board, cant, fin depth, sweep, base length, base foil profile, tip sharpness and tip thickness, all of which can be modified using some simple sliders or dropdown menus. Feedback is also provided in the form of overall dimensions and volume. From the image at the top of the page, you can get a sense for the wide variation in designs possible from this simple interface.

Once you’re happy with the design it can be exported ready for 3D printing. I’ve 3D printed a couple of different designs for testing on my SUP board, the smaller white fin in the image above being 3D printed using FDM, while the larger fin was 3D printed using selective laser sintering (SLS). Both worked well in flat water paddling, although I’m sure some carbon fibre would give me a bit more confidence heading into the surf.

Hopefully some more to come soon as spring and summer approach.

– Posted by James Novak

3D Printed Face Shields vs. Masks

As the graphic above shows, 3D printing a face shield is twice as fast as 3D printing a face mask. How do I know?

In my latest journal article called A quantitative analysis of 3D printed face shields and masks during COVID-19, I documented 37 face shields and 31 face masks suitable for fused filament fabrication (FFF, or FDM). The graphic provides the average data for all the different designs, including a range of qualities including the amount of filament required, number of 3D printed parts, total volume of all parts, and the dimensions of the largest part for each design (so you know if it will fit within your 3D printer’s build volume). If you’re interested in all of the specific details for each of the individual designs, all of the data is free to access here. You might also want to start with my first article analysing 91 3D printing projects at the start of the pandemic.

Why is this important? Well, if you look at the graph above, you can see that the print time and amount of filament for each individual design varies significantly. For face shields, the shortest print time was 46mins to produce a single part with 12g of material for the Version 1 face shield from MSD Robotics Lab. The longest print time for a face shield was 4h 34min (274min) and required 63g of filament, also only a single part from MITRE Corporation. This means that for each MITRE Corporation face shield you could 3D print almost 6 MSD Robotics Lab face shields. This is a big difference if you’re trying to maximise the quantity you produce for your local hospital or health centre. Below you can visually see how different they are, and why there is such a difference in print time and filament use.

Print times vary even more for face masks, with the shortest print time being 2h 14min (134mins) requiring 32g of filament for a 3-part design from Collective Shield (v.0.354). This design is 3D printed in a flat form only 0.6mm thick and then folded into a 3D face mask, often referred to as a “2.5D print.” In contrast, the longest print time for a face mask was 10h 32mins (632mins) with 130g of filament required to print 26 separate parts, forming a respirator style mask called Respirator V2 from Maker Mask. Both of these different designs can be seen below.

Assuming a price for PETG filament of $30/Kg, the cost of 3D printed components for face shields can be calculated to range from $0.33–1.95, while the range of face masks was $0.96–3.90. For one-off products these differences may not be critical to makers, yet when multiplied by hundreds of thousands or even millions (e.g. the IC3D Budmen face shield has been 3D printed over 3 million times!), the potential investment by makers, organisations, charities and businesses may vary significantly based on the selection of one design over another, or one version of a design over another.

If you want to find more of the data and read the detailed analysis, please read the full article here. I look forward to continuing to bring you new analysis of 3D printing during COVID-19.

– Posted by James Novak

3D Printed Sea Urchin Light

IMG_20200301_Sea Urchin Light

This project has been a little while in the making and it’s exciting to finally be writing about it. About a year ago I posted about 3D scanning some shells, and as part of the scanning I captured a sea urchin shell. At the time I didn’t know what I’d do with it, but fast forward a year and I’ve found a perfect application; turning the sea urchin shell into ceiling light covers in my house.

Sea Urchin GIFIn this post I’ll go over the main processes and experiments I went through to get the finished product, but in case you’re just here for the big finale, here’s the link so you can download the final Sea Urchin Light exclusively from my Pinshape account and 3D print as many as you like!

3D Scanning

ScanAs explained in further detail in my previous post, I used an EinScan Pro 2X Plus 3D scanner, which included a turntable to automatically capture all angles of the sea urchin shell. This resulted in a full-colour, highly detailed model of the shell, as shown to the right. However, as anyone familiar with 3D scanning will know, this model is just a skin with no thickness or solid geometry, and was just the starting point for the design process.


If you don’t have access to expensive CAD programs, good news; this project was completely designed in free software! I’ve used Autodesk Meshmixer for many of my tutorials and posts, it’s a surprisingly powerful tool and a must for anyone involved in 3D printing. Additionally, it’s quite useful when you are working with 3D scan files, which are typically a mesh like a STL or OBJ. The process took a little time, but has been outlined in 6 basic steps below:

IMG_20200301_Sea Urchin Meshmixer Tutorial

  1. Fill any holes and errors in the 3D scanned sea urchin shell. In Meshmixer, this simply involves using the “Inspector” tool under the “Analysis” menu.
  2. Scale up the shell to the appropriate size, then use the “Extrusion” tool to thicken the skin into a solid shell. So that the shell would allow a lot of light through, I used a 0.7mm thickness for the overall design.
  3. I wanted to create an interesting pattern when the light was turned on, so separated several areas of a copy of the original mesh to be used to create thicker sections. This was a slow process of using the brush selection tool to remove areas, before repeating step 2 with slightly thicker geometry. For this design I ended up with 3 different thicknesses around the shell.
  4. To allow the light fitting within the shell, a larger opening was needed at the top. A cylinder was added from the “Meshmix” menu and placed in the centre.
  5. By selecting both the shell and the cylinder together, the “Boolean Difference” command became available, subtracting the cylinder section from the shell.
  6. Lastly, a neck section measured off the original light fitting was added. I cheated slightly and modelled this in Autodesk Fusion 360 (also free if you’re a student), but you could use Meshmixer – it would just take a bit longer to get accurate measurements. Then the separate parts are joined together using Boolean Union, and the design is finished.

3D Printing

As well as the new design needing to fit the geometry of the existing light fixture, it also needed to fit the build volume of the 3D printer – in this case a Prusa i3 MK3S. As you can see below, the shell is only slightly smaller in the X and Y dimensions than the build plate.

IMG_20200130_Shell on Prusa i3 MK3S

In terms of print settings, I stuck with some pretty typical settings for PLA, including a 0.2mm layer height. Support material is necessary with the light printed with the neck down – this is the best orientation in terms of ensuring the surfaces visible when standing below the light (remember, it is ceiling mounted) are the best. Where support material is removed is always going to be messy, and you wouldn’t want to have these surfaces being the most visible. Overall, this meant that each light took ~32 hours to print.

Material & Finishing

One of the steps that took a bit of experimentation was choosing the right material in order to look good when the light was both on and off. Each of these lights are the main, or only, sources of light in the spaces they are installed, so they need to provide a good amount of light.

IMG_20200218_Sea Urchin Light Materials

As shown above, 3 different materials/finishes were trialled. Initially I began with a Natural PLA from eSUN, which is a bit like frosted glass when printed. While this allowed all the light to escape and illuminate the room, most of the detail was difficult to see in both the on and off settings. It was just like a random glowing blob. I then tried pure white PLA, hoping that the print would be thin enough to allow a reasonable amount of light out. Unfortunately very little light escaped, however, the shadows from the different thicknesses looked excellent, and when the lights was off, it was very clear this was a sea urchin shell. Perhaps this would be a good option for a decorative lamp, but not so good for lighting a whole room.

So the “Goldilocks” solution ended up being in the middle – I 3D printed the shells in the translucent Natural PLA, and then very lightly spray painted the exterior with a matt white paint. Just enough to clearly see that it is a sea urchin shell when the light is off, and translucent enough to allow a lot of light out. Perhaps there is a material/colour of filament that would achieve this with needing to paint, but I didn’t want to have to buy rolls and rolls in order to find it. PETG would be interesting to try, and if you have any other suggestions, please leave them in the comments section.

The Result

IMG_20200219_143458 Dimensions CropTo the right are the dimensions of the ceiling light fixture within which the sea urchin light comfortably fits. The light itself is a standard B22 fitting, so the sea urchin can comfortably fit most standard interior lights. However, if you have a different sized fitting, or want to fit it over an existing lamp, you can easily scale the design up or down to suit your needs. I’ve already fitted one of the early small test prints over an old Ikea lamp, it just sits over the top of the existing frame. In total I’ve now installed 5 of the large ceiling light covers in my house, and am planning a new design to replace some of the others (my house is full of this terrible cheap fitting!).

As mentioned at the beginning of this post, I have made this design exclusively available on Pinshape – it’s just a few dollars to download the file, and then you can print as many as you like! If you 3D print one, please share a photo back onto Pinshape, I love seeing where my designs end up and what people do with them.

– Posted by James Novak

3D printing is cool, but have you tried 2.5D printing?

20190617 2-5D Print Thin Wall 3D

Over the last 18 months or so I’ve been stripping back FDM 3D printing to its basics, experimenting with a variety of materials, composites and patterns designed to be printed flat and assembled into more complex 3D forms. Why?

Well there are many reasons why you might want to use a 3D printer to create relatively flat forms: firstly, as anyone who has used a 3D printer would know, the process is extremely slow. The less vertical height you need to print the faster your part will be completed (generally). Secondly, most accessible 3D printers have a very small build volume, and often you want to 3D print something huge. By 3D printing a lot of smaller, flat parts and assembling them later, you can create a large 3D printed object on a small machine (for example check out the full length inBloom Dress by XYZ Workshop which was assembled out of 191 smaller panels).

This type of 3D printing has actually been called 2.5D printing, since it is essentially the production of 2D geometry that is extruded in a single direction. No fancy lattice structures or compound curves here! Below are some examples I’ve printed over the years, and while some of them like the mesostructure (centre) may look complex, the geometry can be described by a single 2D drawing and extrusion (Z) dimension.

20190617 2-5D Print Examples

What I’ve learned is that when you are 2.5D printing often thin geometries, optimising the dimensions of the geometry for the specific capabilities of your FDM machine are critical. In fact, just a 0.1mm change in the thickness of a wall can reduce your print time by ~50%, which is a huge time saving. Knowing what these “magic” wall thickness settings are is powerful, and also very simple when you understand the logic.

This information has now been published in a book chapter titled “Designing Thin 2.5D Parts Optimized for Fused Deposition Modeling,” and provides several equations you can use to quickly calculate the optimum dimensions you should use if you want to 2.5D print (or even 3D print) as quickly as possible with maximum accuracy. Below is a visual graph that can be used to select the optimum wall thickness settings when 3D printing with a 0.4mm nozzle, and also shows the effect STL resolution can have. Full details about this graph can be found in the book, however the short version is that you want to be designing thin wall features using dimensions that fall inside the black boxed (or dashed) regions. So, for example if you will be using a 0.8mm printed wall thickness (representing 2×0.4mm extrusions in your slicer), the optimum dimensions to design with in CAD are 0.5-0.8mm, 1.3-1.6mm, or 2.0-2.3mm. Anything outside of these dimensions will require some level of infill structure which takes longer to print, and can result in a more messy part.

20190617 3D Print Thin Wall

For a part similar to the mesostructure earlier, we calculated that simply adding 0.1mm of thickness to the design from 1.2mmm up to 1.3mm would decrease print time by 38% – yes, it sounds counter-intuitive, but adding material can actually reduce print time!

Designing for additive manufacturing (DfAM) is a very important research area, and it is knowledge like this that I hope can be implemented by designers, manufacturers and others involved in 3D printing. If you want to learn more about 2.5D printing, and the equations you can use to calculate the “optimized zones” for your own 3D printer, please check out my chapter which can be purchased with a 40% discount using my author code “IGI40,” or if you are at a university you may find you already have access through your library subscriptions.

Happy 2.5D printing.

– Posted by James Novak