3D Printed Oahu, Hawaii

Sometimes you see a design online and just have to 3D print it!

This is an amazing 3D topographic map of the Hawaiian island Oahu, and for anyone that’s been there you should be able to make out the airport, Pearl Harbour and Waikiki areas. Thanks to Eric Pavey who created this model and detailed the process of using a tool called Terrain2STL on his blog. It’s also available on Thingiverse. The detail is amazing!

For something a bit different, I wanted to do a two-tone print to separate the water and land. Using the Pause at Height feature in Cura, I was able to swap out filament after the first handful of layers, going from eSun white PLA, to eSun bamboo filament. I must admit, the pause feature didn’t quite work how I’d like it to on my Wanhao Duplicator i3 Plus, not actually pausing the print and allowing me to resume it again when I was ready, but I was able to time my prints and catch the feature in time to quickly do a swap during the 30 seconds or so that the Pause at Height feature ran. All it did was move the extruder to the home position and extruded a bunch of material, and then resumed automatically. I might need to create some better G-code for this next time.

However, I’m very pleased with the effect, especially when you move a light around the model!

– Posted by James Novak

3D printing is cool, but have you tried 2.5D printing?

20190617 2-5D Print Thin Wall 3D

Over the last 18 months or so I’ve been stripping back FDM 3D printing to its basics, experimenting with a variety of materials, composites and patterns designed to be printed flat and assembled into more complex 3D forms. Why?

Well there are many reasons why you might want to use a 3D printer to create relatively flat forms: firstly, as anyone who has used a 3D printer would know, the process is extremely slow. The less vertical height you need to print the faster your part will be completed (generally). Secondly, most accessible 3D printers have a very small build volume, and often you want to 3D print something huge. By 3D printing a lot of smaller, flat parts and assembling them later, you can create a large 3D printed object on a small machine (for example check out the full length inBloom Dress by XYZ Workshop which was assembled out of 191 smaller panels).

This type of 3D printing has actually been called 2.5D printing, since it is essentially the production of 2D geometry that is extruded in a single direction. No fancy lattice structures or compound curves here! Below are some examples I’ve printed over the years, and while some of them like the mesostructure (centre) may look complex, the geometry can be described by a single 2D drawing and extrusion (Z) dimension.

20190617 2-5D Print Examples

What I’ve learned is that when you are 2.5D printing often thin geometries, optimising the dimensions of the geometry for the specific capabilities of your FDM machine are critical. In fact, just a 0.1mm change in the thickness of a wall can reduce your print time by ~50%, which is a huge time saving. Knowing what these “magic” wall thickness settings are is powerful, and also very simple when you understand the logic.

This information has now been published in a book chapter titled “Designing Thin 2.5D Parts Optimized for Fused Deposition Modeling,” and provides several equations you can use to quickly calculate the optimum dimensions you should use if you want to 2.5D print (or even 3D print) as quickly as possible with maximum accuracy. Below is a visual graph that can be used to select the optimum wall thickness settings when 3D printing with a 0.4mm nozzle, and also shows the effect STL resolution can have. Full details about this graph can be found in the book, however the short version is that you want to be designing thin wall features using dimensions that fall inside the black boxed (or dashed) regions. So, for example if you will be using a 0.8mm printed wall thickness (representing 2×0.4mm extrusions in your slicer), the optimum dimensions to design with in CAD are 0.5-0.8mm, 1.3-1.6mm, or 2.0-2.3mm. Anything outside of these dimensions will require some level of infill structure which takes longer to print, and can result in a more messy part.

20190617 3D Print Thin Wall

For a part similar to the mesostructure earlier, we calculated that simply adding 0.1mm of thickness to the design from 1.2mmm up to 1.3mm would decrease print time by 38% – yes, it sounds counter-intuitive, but adding material can actually reduce print time!

Designing for additive manufacturing (DfAM) is a very important research area, and it is knowledge like this that I hope can be implemented by designers, manufacturers and others involved in 3D printing. If you want to learn more about 2.5D printing, and the equations you can use to calculate the “optimized zones” for your own 3D printer, please check out my chapter which can be purchased with a 40% discount using my author code “IGI40,” or if you are at a university you may find you already have access through your library subscriptions.

Happy 2.5D printing.

– Posted by James Novak

First 3D Print with the Wanhao Duplicator D9/500

IMG_20180917_Webcam 3D Print Mount

If you have followed my blog for any length of time, you’ve probably noticed I’m quite a big fan of the Wanhao 3D printers – they’re cheap, reliable, upgradable, and just good value for money. Even my Cocoon Create from Aldi is actually just a Wanhao in disguise! Recently Wanhao released the Duplicator D9/500, which has an incredible 500x500x500mm build volume. Yes, you read that right, those numbers are not a typo! The picture above doesn’t do it justice, this is a big unit that currently we can only store and run on the floor until we can free up a large desk. Manoeuvring this thing is definitely a 2 person job!

Before I get into the details of the machine and my first experiences, the printed vase pictured above is the first successful print, which is the Curved Honeycomb Vaseย (free on Thingiverse) printed at 200% scale. Printed in vase mode (aka “spiralise” in Cura) with a 0.8mm nozzle, this print took approximately 6 hours to complete. A great design in itself, and very cool at this large size.

However, it certainly hasn’t all been smooth sailing with this printer. First, there were some lengthy delays from Wanhao between when we placed the order and finally received the machine – apparently some manufacturing and quality control issues, and Wanhao may have released the machine a bit too early to market. In total we waited several months, however, they may be much faster now that issues seem to be resolved. The second big issue we faced was assembly – the supplied instructions weren’t particularly useful or even relevant, with some of the components no longer supplied with the printer – it seems that the initial release included large brackets to help stabilise the frame and some other details in the instructions, so we were left feeling like we were missing some parts. Apparently we are not, although we still haven’t figured out some of the cable management issues and have had to hack together a temporary solution for now.

Another challenge with assembly was in constructing the frame; obviously at such a large size the frame wasn’t pre-assembled like the smaller Duplicator 3, and the frame also uses extruded aluminium rather than folded sheet metal. Squaring all of these extrusions is not simple, and some initial issues when running the machine were related to having one of the vertical frame pieces lightly twisted. Some better alignment details are definitely needed.

The final issue that we’ve been experiencing is in the auto-levelling sensor, which was not installed at the correct height in the factory and required a lot of manual adjustment (we had the nozzle collide with the bed several times when first running it). However, even with this, the machine doesn’t really seem to adjust the prints for any levelling issues; our first prints across the bed revealed a number of areas where the bed was slightly warped, which were not being corrected by the auto-level feature, so we are currently manually doing adjustments for now. And we have found the central area of the bed is OK, so the vase printed really well.

So overall I would have to recommend that anyone considering this printer hold off for at least a few more months, there are just too many issues for anyone without a lot of experience calibrating 3D printers, and without the time to really get in and troubleshoot issues. Last time I searched on YouTube it seems others have also come to a similar conclusion. I think with time this will be a great 3D printer, we’re certainly going to keep learning more about it, but this seems like a case of a manufacturer rushing to market without properly testing and perfecting their equipment. Unfortunately, an all too common story in the 3D printing world.

Make sure you follow my blog and social media accounts to keep up to date with ongoing test prints and posts about the Wanhao Duplicator D9/500. And please share your own experiences in the comments section so we can all learn from each other ๐Ÿ™‚

– Posted by James Novak

*UPDATE 14/1/2019 Recently I have updated the firmware of the printer to see if that would improve performance of the machine. I recommend this as a priority for anyone with a D9, it could fix some of the issues you may be experiencing as there are probably several different versions of firmware out there now depending when you purchased your printer. While I haven’t noticed a difference with the levelling issues, it’s always worth running the latest firmware to fix any other potential issues. This video tutorial is excellent, I followed it exactly and managed to update both the LCD display and motherboard to version 0.164(B).

For now I’ve manually adjusted the levelling sensor so that in some areas the nozzle is lower than it should be, pushing into the print surface. This makes other areas of the warped plate the correct height, and after a few layers seems to level things off and be printing OK. Not great, but working for now.

Yes I Wrap, Don’t You?

20180831_3D Print Vase Wrap String

One of the common features of desktop 3D printing is the sharp, hard feel of plastic with that scratchy horizontal layered surface finish. Sure plastic has many benefits, but when you handle 3D prints all day long you sometimes forget that there are other textures in the world that are soft, delicate, pleasurable to touch. Enter the wrap, an experiment that softens those 3D prints in a crafty, hand-finished way.

For this project I downloaded the Customizable Twisted Polygon Vase from Thingiverse, which you will notice when you download is a solid block. This print takes advantage of a feature known as “vase mode” in many slicing programs, although if like me you are using Cura it’s called “Spiralize,” and you will need to activate it in your settings in order to have it available in your main screen settings. Basically the idea is that you can load any solid 3D model and automatically turn it into a vase-like shape i.e. a base and an outside wall without any interior or top surface. The outer wall is a single perimeter, which the printer continually extrudes in a spiralling/helical fashion as it works its way up the vertical height of your object. So no need to use a “shell” command in your 3D CAD modelling software, you can design a solid block and let the slicing software automatically create a single perimeter based on the extruder settings of any FDM 3D printer. A fun project in itself.

Phase 2 of the project was to use some wool yarn to wrap the exterior. What’s interesting about this process is that the layered surface finish of the 3D print actually helps hold the yarn/string in place, stopping it from slipping down the vase and helping align each rotation of the yarn. A relaxing project while you’re sitting in front of the TV or Netflix! The yarn I used was very fine so took quite a while, however you could easily use a thicker yarn to reduce the amount of effort to achieve a similar result. The result is really interesting; it keeps the layered appearance of a 3D print, yet is soft to the touch and provides a unique finish to the vase. Something you could easily customise with colours and different types of yarn materials. Ultimately, it creates an interesting combination of a highly digital process with a more craft-based process and material… Something worth a bit more experimentation I think.

If you give it a go, please share a photo with me, I’d be interested to see your results!

– Posted by James Novak

Cocoon Create Goes the Distance

20161122_cocoon-create-print-summary

This week I’ve spent 48 hours printing 14 segments of my latest PhD project on my Cocoon Create 3D printer, and despite the usual hiccups like print warp and delamination of layers (they are some large pieces using ABS so it’s no surprise – stay tuned for a post on using a 3D print pen to fill gaps), the printer itself performed beautifully. With another 59 hours of printing left to go, I thought it was time to write a little update on the printer and why I think it’s probably the best value printer out there.

Firstly some clarification – the Cocoon Create is based on the open source RepRap Prusa i3, one of the most popular 3D printer designs ever. Many derivatives exist out there that all look identical, including the Wanhao Duplicator i3 Plus which I’ve seen marketed quite a lot on Ebay. The benefit of this is that there are endless supplies of spare parts and forums offering tweaks and suggestions, you just need to look further afield then the “Cocoon Create” since this is the branding for the printers sold at Aldi in Australia only as part of the promotion this year. So there’s not much of a community out there specifically for this printer. But for the general type of printer, the numbers are huge.

As you can see from the top photo, I’ve nearly printed 1km worth of filament with this printer, which I only bought in February this year during Aldi’s promotion. You can read about my first impressions here. For many years I’ve enjoyed successes with the UP range of printers (including the UP Plus 2 and UP Mini), but with the Cocoon Create proving to be just as reliable, and only 1/3 of the price of the UP Plus 2 ($499 AUD), the Cocoon Create is definitely proving to be better value for money. If you do the maths, this printer has so far cost me only $2.90 per hour of printing (+ materials and electricity of course).ย  In particular the positives I really enjoy are:

  • Rugged steel design means that there is no movement in the printer – I never have to adjust the level of the print bed. Just click print and it works every time.
  • Good print plate that the filament adheres to quite well – no need for glues or tape. I also really like using the Brim setting in Cura to help hold the prints onto the bed and really minimise warping on large prints. I wrote a post about that previously with photos showing with and without the brim setting.
  • Decent sized build platform, twice the size of the UP printers ๐Ÿ™‚ (200 x 200 x 180mm)
  • Open in every way – software and hardware. Unlike many of the printers on the market, you can see and access all of the main features of the printer. Great if anything happens and you need to replace a part. Also you can use just about any software you like for slicing models and saving out G Code. I’ve just stuck with the recommended Cura so far, it has all the settings I need. The great thing about this is that you can get right into the details of the print settings, tweaking until you get your print just right – many printers come with proprietary software, which is normally good for simple plug-n-play prints, but won’t give you full access to settings.

A few things that are still a bit annoying, because hey, it’s still only a cheap printer and can’t be perfect:

  • The print plate can’t be removed from the printer (well not easily – you would need to re-level the plate each time), meaning that you need to scrape prints off in situ. I do prefer the ability to swap plates and remove a print when I can get at it easily with some tools.
  • The user interface is extremely old-fashioned, possible a relic from the 80’s – a single dial is used to scroll through menus and make selections, and it gets a bit painful.
  • Emergency stopping a print when something goes wrong requires either cycling through a few menus (see point above), or cutting power all together which is never a great solution. Perhaps a nice red emergency stop button would fit in with the 80’s styling?
  • Running back and forth between computer and printer with a SD card can be painful – with the cheap cost of WiFi chips these days, hopefully the next version can stream directly from the computer. However most printers still suffer from some sort of physical connection or SD card. Maybe it’s just because I keep my printer in a separate room to avoid the fumes…

Those are some of the main things on my mind as I reach the halfway point of this big session of printing on the Cocoon Create – keep your eyes out in 2017 for a return of the printer to Aldi, I have it on good authority that it will be making a comeback ๐Ÿ˜‰ Follow my blog (bottom of the page) or twitter if you’re interested as I will definitely be posting the news as soon as I have details.

– Posted by James Novak

When Layer Orientation Matters

20160819_Meshmixer Plane Cut

Often when you are 3D printing the main thing you think about is how much support material your print will have, and you orient your print to minimise this – reducing material waste, print time and any manual post-processing to clean up the print. However sometimes the best print orientation for these reasons is not the best for mechanical strength, and I’ve just discovered this with one of the parts for the InMoov robotic arm I’m currently building (see the first collection of 3D prints in my previous post).

The “RobServoBedV6” part is where the 5 servo’s connect that control the individual finger movements, using screws to fix them in place. However some of the stands are splitting as I screw into them as shown in the photo above due to the layer orientation. Yes I could use super glue to fix them, but the split will just happenย  somewhere else. So I’m going to completely cut the stands away from the part, and re-print just these stands in a different orientation to improve their strength. This is where the free program Meshmixer comes in very handy, and I’ve previously published a few examples of how to use it for my friends at Pinshape – just click here to find out more.

In the top right image you can see the first step of using Meshmixer to edit the STL file. I have used the Plane Cut tool to slice away the bottom plate, and then repeat the process to remove the other 2 segments which seem to be strong enough for the screws at the moment. This leaves me with the 2 stands that I’m having issues with. These can now be exported as STL’s ready to 3D print (orientation is not important here, this will be set in my 3D print software).

Cura from Meshmixer

I’m printing these parts as we speak on my Cocoon Create 3D printer, and have used Cura to prepare the parts and get the G-code. As you can see to the left, I have oriented the parts so that the layers are perpendicular to the original orientation, meaning that when I screw into them, the force from the screw will not pull the layers apart. Super glue will hold these replacements onto the original part really well as they are printed in ABS.

If you are designing your own parts from scratch in CAD and intend to screw directly into them, keep this issue in mind. However if you’re downloading a STL where modification isn’t as easy, knowing this simple trick in Meshmixer can really help you repair and improve a part rather than trying to re-print it from scratch and potentially use a lot of support material in a different orientation.

– Posted by James Novak

Brimming with Success

20160712_3D Print Brim

Excuse the headline pun, but this post is all about 3D printing using a brim, which evidently can really improve your success rate with large flat surfaces.

For those not familiar with a brim, it’s an option in some 3D print software (such as Cura) that lays down an extra width of material around your object and attached to it, one or two layers tall. You can see the brim around my enclosure in the top left image. Essentially this extra material creates a stronger bond to the build plate, helping to fight the contracting forces of the cooling plastic that can commonly cause warping. Of course there are many other ways to combat this, including laying down some glue or adhesive spray, printing the part in a different orientation, or using an enclosure to keep the print warmer so there is less warping from rapidly cooling plastic. However these aren’t always an option, so using a brim can be a really effective solution that only wastes a very small amount of extra material.

In the top right image you can see my first attempt at printing this enclosure half, which is very clearly warped as the outer edges lifted up from the plate under the contracting forces of the cooling plastic. Support material was used, but nothing else. In contrast, you can see the middle image which is the end result once the brim from the left image was removed – perfectly horizontal! This is really important for this design since it is one half of an enclosure, and the warped version simply won’t fit properly with the other half.

20160712 CuraIt’s certainly not something needed for every print, but for large surfaces it’s proving to be very successful. If you’ve had similar problems with warping and haven’t tried a brim yet, it’s worth giving a go – you can see where to access this setting if you are using Cura on the left, very easy, or if you are using another program to slice and print, have a look through your settings. The raft is another option you may have used, however the raft builds up a lot more material underneath your entire object which is wasted. It can also be a good option though, especially if you are using a printer like the Up Plus 2 which does not have the option of printing a brim but will do a good job with a raft.

– Posted by James Novak

Aldi 3D Printer -First Impressions

20160217_Cocoon Create

Yes that’s right, Aldi are selling a 3D printer! For those of you not familiar with Aldi, they are essentially a global supermarket chain, and here in Australia, they also sell “special buys” each week which could be anything from power tools to clothing and everything in between. This weeks special: the Cocoon Create 3D printer for $499AUD, a bit of a bargain when you look at its’ specs. Although of course I had been skeptical, being burned by my last 3D printer purchase from Solidoodle (which you can read more about here) which I have now hacked to do other things, and still waiting for the Tiko that I funded on Kickstarter last year I had to have one… It might be sad by I actually can’t live without a 3D printer anymore with all the work I’m doing.

However what really grabbed me is that being Aldi, this printer would come with a warranty (1 year) and be easily returned if it was a dud (a real challenge when most printers are bought online and can be difficult to return), and also this printer is based on the RepRap Prusa i3 which means any replacement parts and tweaks will be easy to obtain. With some nice upgrades, particularly the metal frame (as opposed to most RepRap’s which use acrylic or plywood and can therefore be quite flexible) this really looks like a promising machine . Like anyone else serious about getting their hands on these limited weekly specials, I joined the 2 or 3 other nerds outside my local Aldi before they opened, and made the mad dash inside like a kid in a candy store! As you can see, I was successful ๐Ÿ™‚

20160217_Cocoon Create Unbox

In the above photos you can see some of the initial finds from the package, which included a thorough manual designed to guide someone with little to no experience of setting up a 3D printer and using Cura to slice STL files through the process, a spare pad for the print bed, some tools, a small roll of PLA and a SD card to use for transferring the G-code from Cura onto the machine (there is also a USB connection, but I like the SD card which means I can have my printer in another room where the fumes can be ventilated). Setup was very quick with just a few screws to join the pieces together, and then the leveling of the bed. Let me summarise some of my initial observations and thoughts after doing a few small prints so far:

  • The navigation through the menus is a little bit old-school (reminds me of DOS!), and could benefit from a touch screen. However there are a lot of controls available in the menu, allowing you to really tweak the performance of the machine without connecting to a computer. The beeping sound as you scroll through each option is a little annoying.
  • The home screen of the printer (shown at the top) is awesome and shows some really useful information such as temperatures of both the nozzle and bed, and how much of the print has been completed.
  • Leveling of the bed is manual and easy to do with the 4 corner wingnuts. Many printers now come with auto-leveling which can be quick, but also doesn’t always seem to work as well as just leveling it out yourself.
  • At one point I wanted to stop a print part way through as it was lifting off the bed – you have to navigate through the menu to find this option, and the only other way is to switch off the power. An extra button just to pause or stop a print would be really handy for those emergency situations!
  • To remove a print you have to pry it off while fixed to the printer – you can’t just un-clip the bed and really get at it with a scraper. This may cause some problems down the line, every other printer I’ve ever used allows the bed to be removed.

These are just a few things I’m noticing right off the bat, but overall I’m really really impressed with this machine – the very first print I did worked flawlessly which you can see below.

20160217_Aldi 3D Printer

This SUP paddle clip (which you can read more about here) was 3D printed with the same settings I’ve used on the Up! Plus 2 printer, specifically a 0.2mm layer height and minimal support, and printed in about the same 50 minutes. I can honestly not tell the difference in quality, which is extremely clean and accurate. As I write this a second one has been printed to the same high quality. For $499 this is a much better finish than I expected!

Funnily enough a significant reason I started this blog in the first place was to share what I thought would be an enjoyable experience with the Solidoodle Press, and begin comapring it to other printers I’ve used and hopefully benefit others looking to get into 3D printing – it’s nice to finally come full circle back to writing about my experience with this (so far) promising 3D printer. Stay tuned for more frequent 3D prints, designs and discussion of how this printer performs.

– Posted by James Novak