Using Every Last Drop

IMG_20180917_Webcam 3D Print Mount

Perhaps it’s the result of spending 10 years as a poor uni student, but I really like to use every last drop of liquids: sauce, toothpaste, shampoo and yes, deodorant. Many of the roll-on style deodorants, such as those from Nivea, have a domed lid, meaning it’s impossible to tip them upside down as liquid is running low and store them so gravity can do its thing. In my mind, this is a design flaw in the packaging (although from Nivea’s point of view, this is a great way to keep people buying more products more often).

I had originally planned to create my own design to solve this problem, however, after a quick search on Thingiverse I was pleasantly surprised to see many people had already beat me to it! There are plenty of designs to choose from, and I decided on this helix design for its interesting form. Click here to download the file for yourself from Thingiverse.

The print took just over an hour to complete, and as you can see from the pictures, it does exactly what it promises. I also streamed the 3D print on my YouTube channel, so if you like watching the grass grow, here is an hour of entertainment just for you! Make sure you subscribe if you want to be alerted of the next live 3D print 🙂

– Posted by James Novak

Advertisements

First 3D Print with the Wanhao Duplicator D9/500

IMG_20180917_Webcam 3D Print Mount

If you have followed my blog for any length of time, you’ve probably noticed I’m quite a big fan of the Wanhao 3D printers – they’re cheap, reliable, upgradable, and just good value for money. Even my Cocoon Create from Aldi is actually just a Wanhao in disguise! Recently Wanhao released the Duplicator D9/500, which has an incredible 500x500x500mm build volume. Yes, you read that right, those numbers are not a typo! The picture above doesn’t do it justice, this is a big unit that currently we can only store and run on the floor until we can free up a large desk. Manoeuvring this thing is definitely a 2 person job!

Before I get into the details of the machine and my first experiences, the printed vase pictured above is the first successful print, which is the Curved Honeycomb Vase (free on Thingiverse) printed at 200% scale. Printed in vase mode (aka “spiralise” in Cura) with a 0.8mm nozzle, this print took approximately 6 hours to complete. A great design in itself, and very cool at this large size.

However, it certainly hasn’t all been smooth sailing with this printer. First, there were some lengthy delays from Wanhao between when we placed the order and finally received the machine – apparently some manufacturing and quality control issues, and Wanhao may have released the machine a bit too early to market. In total we waited several months, however, they may be much faster now that issues seem to be resolved. The second big issue we faced was assembly – the supplied instructions weren’t particularly useful or even relevant, with some of the components no longer supplied with the printer – it seems that the initial release included large brackets to help stabilise the frame and some other details in the instructions, so we were left feeling like we were missing some parts. Apparently we are not, although we still haven’t figured out some of the cable management issues and have had to hack together a temporary solution for now.

Another challenge with assembly was in constructing the frame; obviously at such a large size the frame wasn’t pre-assembled like the smaller Duplicator 3, and the frame also uses extruded aluminium rather than folded sheet metal. Squaring all of these extrusions is not simple, and some initial issues when running the machine were related to having one of the vertical frame pieces lightly twisted. Some better alignment details are definitely needed.

The final issue that we’ve been experiencing is in the auto-levelling sensor, which was not installed at the correct height in the factory and required a lot of manual adjustment (we had the nozzle collide with the bed several times when first running it). However, even with this, the machine doesn’t really seem to adjust the prints for any levelling issues; our first prints across the bed revealed a number of areas where the bed was slightly warped, which were not being corrected by the auto-level feature, so we are currently manually doing adjustments for now. And we have found the central area of the bed is OK, so the vase printed really well.

So overall I would have to recommend that anyone considering this printer hold off for at least a few more months, there are just too many issues for anyone without a lot of experience calibrating 3D printers, and without the time to really get in and troubleshoot issues. Last time I searched on YouTube it seems others have also come to a similar conclusion. I think with time this will be a great 3D printer, we’re certainly going to keep learning more about it, but this seems like a case of a manufacturer rushing to market without properly testing and perfecting their equipment. Unfortunately, an all too common story in the 3D printing world.

Make sure you follow my blog and social media accounts to keep up to date with ongoing test prints and posts about the Wanhao Duplicator D9/500. And please share your own experiences in the comments section so we can all learn from each other 🙂

– Posted by James Novak

3D Printed Webcam Mount

IMG_20180917_Webcam 3D Print Mount

Whenever I travel I always have a small Guerrilla tripod to easily mount my cameras just about anywhere – the flexible arms make it perfect for wrapping around handrails or quickly levelling on uneven surfaces. Which made it my first choice when it came to mounting an old webcam so I can begin streaming my 3D prints to Youtube!

I’m seeing a lot of people like @wildrosebuilds posting awesome time-lapse videos of their 3D prints, and plenty of tutorials online showing how to build quite elaborate rigs to do so. I don’t really have time to deal with all of the video editing for each print, but the opportunity to live-stream prints directly to Youtube seems like a great way to share what I’m working on in real-time, and also allow me to monitor prints without having to physically be with the printer. However, webcams aren’t designed to mount to the typical screw mechanism used by tripods/cameras, so I had to design my own bracket to allow me to mount an old Logitech C270 HD webcam to the tripod.

The top right image shows the small slide-in clip that screws to the underside of a camera, and locks into the tripod. My first step was to reverse engineer this part with a set of calipers, modelling the geometry in Solidworks. I then added a vertical element to attach to the webcam, which has a hole on the back normally used by a bracket attaching the webcam to a computer screen. An extra lip on the front to hold the webcam in a vertical orientation, and voilà!

The blue bracket has been printed on my Wanhao Duplicator i3 Plus in PLA, and a screw I had lying around holds the webcam to the bracket. A nice little solution that should see some action very soon. Subscribe to my Youtube channel or follow me on Twitter to be alerted when I begin streaming prints, I know it can be a bit like grass growing but watching 3D prints is still addictive to me. If you’d like to download this design for yourself, you can find it on Thingiverse, Pinshape and Cults – feel free to make your own modifications as needed and share, I know the C270 is quite a popular webcam.

– Posted by James Novak

UPDATE: If you want to see my first live-stream using this webcam mount, here it is:

Check out my channel to see more, and subscribe to be alerted when I go live.

#3DBenchy, the Most Downloaded 3D Print

20180914_3DBenchy

If you are involved in 3D printing there’s no doubt you’ve at least heard of #3DBenchy, if not printed one, or two, or even more. What is #3DBenchy? Well, it’s a tug boat of course! But more than that, #3DBenchy has become like the “Hello World!” from coding, the go to 3D model to test out a new printer or setting. Why a tug boat? That’s a very good question, and the only real explanation is that it includes a number of features that challenge a printer including overhangs (e.g. roof) and a variety of angled surfaces. Also, it’s a little more interesting than a basic calibration cube or set of test prints.

#3DBenchy was developed by a company called Creative Tools, initially as an in-house calibration test for their own printers. On April 9th 2015, Creative Tools uploaded the design to Thingiverse for anyone to download for free, and the rest, as they say, is history. Since then the file has been downloaded over 600,000 times from Thingiverse alone, and can be found on pretty much any other 3D file sharing website. #3DBenchy even has its own website, Instagram profile, and Twitter account – talk about a famous 3D print!

I’ve never seen any need to jump on board the #3DBenchy bandwagon, however, I was recently writing up some research that required me to photograph a #3DBenchy, and I’m always up for an excuse to print something new. So here we are, #3DBenchy in hand, and given I used some relatively fast settings to get it printed in about 1 hour, I think the result is quite good. This one is the original #3DBenchy at full scale, printed without support. And of course my photos have been fed back onto Thingiverse as one of the 2788 makes of #3DBenchy, and one of 2961 posts on Instagram… and counting. Vive la révolution!

– Posted by James Novak

A 3D Printing Workflow with Free Software

Solid Hollow Lattice

One of the challenges for designers (beginner and advanced) creating objects for 3D printing is finding software capable of doing the complex things we enjoy seeing in 3D printing news and exhibitions. There really doesn’t seem to be one program capable of doing it all, and this has been re-emphasised to me during my recent studies at MIT and a visit to Autodesk. However, there is some good news: if you’re able to quickly learn software, you can find an increasing number of freebies that seem to be specialising in small aspects of the workflow, which you can move between to create complex designs.

Form 2 Print Lattice

This tutorial will show you how I used completely free software to create a complex object during my time in the MIT course “Additive Manufacturing: From 3D Printing to the Factory Floor” as part of a group project, and is actually very quick once you become familiar with the programs. This particular design combines a hollow object with an internal lattice structure suitable for SLA printing on a printer like the Form 2 from Formlabs, which is what was used for the translucent version in the photo above. The white version in the background is a cross-section view of what is going on within the SLA print.

Step 1: The Overall Form

Clip 01 - 01

There are loads of free programs to use for creating 3D models – Tinkercad, Sketchup, Openscad, Sculptris, Fusion 360 (if you’re linked to an educational institution)… there are many more and you can certainly use your favourite. For this project, I actually used Onshape for the first time, which runs completely in the cloud (so no software downloading or limitations on computer operating systems/specifications). If you are at a school or university, you can get a free license. It works very similar to Solidworks or other high-end CAD packages, so if you are familiar with sketches and features, you will pick it up very quickly.

Basically, whichever CAD software you use, you want to create the overall shape of your object. In this case, I created an organic tear-drop shape using a “loft,” and cut a section out of the back so that it would clip onto a desk and act as a bag hook (part of the MIT design challenge).

Step 2: Make it Hollow

Many CAD programs will allow you to “shell” your design, making it hollow inside. However, if you can’t find the tool, or aren’t getting good results, we can do this in the next piece of software. But first, export your solid file as a STL (and if you managed to shell it in this step, export a STL of the hollow version as well and skip the rest of this step. You will still need a solid version for the lattice process).

Meshmixer Hollow

The next free program, which I think is a must for anyone with a 3D printer, is Meshmixer. It allows you to edit the normally un-editable STL file format, and I have previously written tutorials about how to do download files from Thingiverse and combine them in creative ways or add your name to a downloaded part.

If you weren’t able to hollow out your design previously, click on Edit>Hollow and set your wall thickness. Just like that, your solid object is now hollow, and can be exported as a STL.

A note for SLA printing:

Meshmixer Drainage Holes

When using the Form 2 3D printer for the first time, I was surprised to learn that the PreForm software doesn’t allow for the user to specify infill patterns in the same way that is commonly done with FDM printing. That is what created the need for this custom lattice infill, and this tutorial. So, being a liquid resin printer, the final important step is to add drainage holes so that the form doesn’t end up completely full of liquid, and errors don’t occur during printing.

Meshmixer again has this function built in. While in the Hollow tool, you will have the option to “Generate Holes” and manipulate their location. This is really important, as you won’t be able to do it again later once your hollow and lattice are combined (unless you’re familiar with the boolean commands in Meshmixer and manually add a cylinder from the Meshmixer menu to use as a cutting tool).

Step 3: Creating a Lattice

Lattices and 3D printing are best friends. But creating a lattice in many CAD programs is close to impossible, usually requiring advanced skills and a computer that can handle very large patterning features. nTopology Element is a free program that will dramatically simplify the process for you – simply load a STL file, choose a lattice pattern, and boom! your object is now a lattice. But let’s go through it a little more slowly.

1. Import your solid STL file into nTopology Element.

2. On the top menu, click Lattice>Generate

3. In the pop-up, you can play with the lattice patterns (called “Rules”), the size of each lattice volume, and click Generate to get a preview. When you’re happy with the result, click on Apply.

nTopology Lattice Trim

4. You will notice that the result has the lattice coming outside of the original object. This is because only whole lattice volumes are used to fill the object, rather than automatically being trimmed to fit. So we must do this manually. In the top Edit menu, click on the Trim tool. A new pop-up will appear, asking you to select the Lattice geometry and the Trim Volume (original model), which you can select from the drop-down menu on the left. Click apply and the lattice will be trimmed to fit perfectly within your original design.

5. At this point, the lattice is made up of vectors – they have no volume. So the next step is to use the Thicken tool on the top menu to provide a diameter to your lattice.

nTopology Tutorial

6. Lastly, the thickened lattice needs to be turned into a single mesh that can be 3D printed. The Mesh button (where it says Interchange on the top menu) will join everything together and give you a single mesh. In the drop-down menu on the left, you can now right-click on the mesh, and click on export to get your STL file.

Step 4: Bringing it all Together

The free version of nTopology won’t let you stitch multiple files together, however the Pro version will if you ever end up with the need for a full license. So back to Meshmixer to bring it all together ready for 3D printing.

1. Import the hollow STL and lattice STL into Meshmixer (when you click on import for the second file, use the Append option).

2. You will notice that the ends of the lattice stick out from your object. There are 2 ways to correct this: Option 1 is to use the sculpt tool with the “Flatten” brush to go around and push the ends of the lattice inside of the object boundary – it’s just like pushing clay.

Meshmixer Sculpt Lattice

Option 2 is to ever so slightly reduce the scale of your lattice. With the lattice selected in the pop-up Object Browser window (on the right of my window), click on Edit>Transform and you can either manually manipulate the scale, or more accurately type in the reduction in the transform window (with the uniform scaling option ticked). You should only need a small reduction until the lattice fits just inside the outer skin of your object.

3. By turning off the hollow part in the Object Browser, but keeping it selected, you will get an X-Ray view into your object to check if the lattice and hollow part are intersecting. This can help with any final alignment. Remember; you want the lattice touching the solid shell, but not poking through so it’s visible, or loosely floating within the hollow.

Meshmixer Lattice View

4. In the Object Browser, [shift]+click to select both parts at the same time. A new window will appear that will allow you to Boolean Union or Combine both parts together, creating a single object.

5. Export the final STL and you are ready for 3D printing.

SLA Form 2 Print Fresh

Step 5: Getting Creative

Meshmixer Creative Lattice

Once you get a bit of experience with this process and some of the other tools in Meshmixer, your imagination is the limit! You can really begin to play with different combinations of solid and lattice structures depending on the result you want. Have some fun and feel free to share any of your own creations in the comments section.

– Posted by James Novak

3D Printed Hooks

20180521_3D Print Hook

3D printing really does solve so many problems – previously I’ve replaced a small whisk in a milk frother, produced my own kitesurfing fins, 3D printed locking mechanisms for some stand up paddles, and made numerous enclosures for Arduinos. What did we do before 3D printing?

This is yet another example of the need for a unique part – some hooks to display some work in front of my office, which could attach to some vertical plywood fins without permanent fixings like screws or staples. The plywood is 17mm thick, which was the only dimension needed to create this hook design, and I’ve modelled the arms to be a maximum of 17mm apart, with a 1º draft angle to really hold on to the plywood towards the back of the arms which are less than 17mm apart. This creates a good clamping force on the plywood. They are also designed so that they require no support material when 3D printing, making them fast and efficient to produce.

While it’s quite a unique case, I’ve decided to share the design on Thingiverse, Pinshape and Cults  in case it’s of use to anyone, or even just a good starting point for your own design. You could even try scaling them in width to fit the dimension of your vertical board. Happy printing.

– Posted by James Novak

3D Printed Assemblies

20180420_3D Print Moving Assembly

One of the most interesting features of 3D printing is that it’s possible to print multiple parts in their assembled state, reducing the need to bring together a whole range of different pieces and assemble them using screws, snaps, glue etc. While this is normally easier using the Selective Laser Sintering (SLS) process, with a bit of experience and some clever design skills, it’s possible to 3D print moving assemblies on a basic desktop FDM machine.

Pictured above are 2 objects I’ve been wanting to 3D print for a long time as great examples of what can be done with an FDM machine. The first is called an Air Spinner and is free to download from Thingiverse. Due to the tolerances and angles between each part, no support material is needed, and you can literally start spinning each of the pieces straight off the printer, functioning like a gyroscope. A nice quick print, and a great demo piece. Below is a video I found of someone printing and spinning one so you can get the full effect.

The second print pictured to the right is a Planetary Gear Keychain, also free to download from Thingiverse. This one is much more of a test of your printer’s settings, the first time I printed it all of the pieces were completely fused together and impossible to free. Even this print required a knife to separate pieces that formed part of the first layer, with the squished plastic bonding them together as my nozzle was slightly too close to the print plate. This one is remixed from another design on Thingiverse which I recommend you check out for all the instructions to help get the best result, and read how other people achieved successful prints. Here’s a short video to see the planetary gears in action

If you’re looking for some fun prints to share with people, these 2 are very much recommended and relatively quick, although I’m still a very big fan of the Kobayashi fidget cube from one of my previous posts whichis another great assembled object. If you’ve got a favourite 3D printable assembly, leave me a comment/link below and I might add it to my list of things to make!

– Posted by James Novak

Oh That’s Handy – 3D Printed Prosthetic

20180114_e-Nable Prosthetic Hand

If you’ve been paying any attention to 3D printing over recent years, no doubt you’ve seen at least a few 3D printed prosthetics. From the Iron Man prosthetic arm to the prosthetics being 3D printed for our animal friends, 3D printing is ushering in a new generation of low-cost, customisable prosthetics. Perhaps you’ve even seen my build of the fully robotic InMoov hand which has been documented on this blog.

At the extremely affordable end of the spectrum for humans, Enabling the Future (also called e-NABLE) is one of the most well-known names, developing a range of  open source prosthetics since 2013, which can be freely downloaded, printed, assembled and sent off to those in need. As part of my research I have wanted to build one of the e-NABLE hands for a while now to understand more about them, particularly in comparison to the more complex InMoov robot arm. As pictured above, I’ve finally got around to printing the Phoenix v2 hand, which is wrist actuated to open/close the fingers.

When you look at all the details, it really is a clever design which is optimised for 3D printing on a desktop FDM machine, with almost no support material or waste, and tolerances that fit really well together. Anyone with a 3D printer could assemble one of these, most of the non-3D printed parts can be sourced at a local hardware store or found in your shed (screws and fishing line). The instructions are very clear, and there are loads of videos to help demonstrate the assembly process and how some of the technical aspects of the hand work. Because I printed in ABS rather than PLA plastic, the only small hurdle I had was in the thermoforming process of the gauntlet (the bent white piece that mounts to the users arm), which required me using a strip heater in the university workshop. If you find yourself in a similar situation, you can check out the details which were posted in one of my previous posts. However, I recommend using PLA if you have the choice to make this part easier, only requiring some boiling water as demonstrated in this video. In itself, this is a really cool technique that I will use in the future to create stronger parts; you can always learn a lot from 3D printing other people’s designs.

Overall the e-NABLE community really has done a great job in refining this design over the years, and I’m already working on some of my own iterations which will hopefully be fed back into the e-NABLE community in the future. If you’re looking for a project to build and learn from, or potentially getting involved in the community and building hands for people in need, Enabling the Future is definitely worth researching.

– Posted by James Novak

3D Printed Kobayashi Fidget Cube

20180115_Fidget Cube 3D

One of the great opportunities presented by 3D printing is to print multiple parts as a single object, and have them move afterwards as a complete assembly. There are many great examples, and this Kobayashi Fidget Cube has been on my “to-print list” for some time now. The file is freely available on Thingiverse, and it is pretty awesome!

The photos above give some idea of how it works; a series of cubes that are linked, allowing them to rotate around through a series of positions as you fold and open sections of the object. However the video below (not my own) shows exactly how it works, and is basically a form of fidget device that is currently a popular trend.

As well as being a fun object, it is a great test of your printer’s accuracy and settings, and I must admit my Cocoon Create only had average results. The cube works, but some of the movements are much stiffer than the video. This is probably to do with my settings, I was a little impatient in printing so did not optimise as much as necessary things like layer thickness (used 0.2mm and should’ve tried 0.1mm) and printing speed (50mm/s instead of perhaps 30mm/s or less). I also had to use a knife to slice some of the bottom layers where the cubes had fused together on the print plate. Not a bad first effort, but I might try printing again soon to get a really smooth operating fidget cube.

– Posted by James Novak

Thermoforming 3D Prints

20171113_Thermoform 3D Print

Sorry for the blogging silence, this is the longest break I’ve had since starting a number of years ago. Long story short I’ve made a big move recently for work and am only just starting to get back into printing and making new projects. If you follow my social media, you’ve probably noticed some new things starting!

One of the projects I’ve wanted to play with since previously building the InMoov robot arm is the Enabling the Future prosthetics (aka. e-NABLE). This week I 3D printed and built most of the Phoenix v2 hand, which of course is open source and free to download. A really inspiring company, and a vastly more simple design compared to the electronic InMoov! Some of the pieces, which I printed on an UP Mini 2 in ABS plastic, can be seen above. I’ll post full details once I get it up and running, just waiting on some elastics for the fingers. The gauntlet piece, which attaches to the users forearm, is printed in a flat position and then bent into a C shape afterwards. This is a really clever idea for providing the strongest functional part with optimal layer orientation. But how do you bend a 3D print?

Well the instructions from e-NABLE require dipping the piece in boiling water for a few seconds to make it pliable – if you 3D print in PLA, which has a lower melting temperature than ABS. Check out the video here. However ABS is not really going to be affected by boiling water, and just to make sure I did try this technique with my first print. It did get a bit of a bend, but mostly a snap!

For print #2 I instead found myself a strip heater in the workshop, which is perfect for heating a nice clean line and normally used to bend acrylic sheets. A few seconds on each side of the print and it bent perfectly without de-lamination or splitting, and was easy to re-heat to make small adjustments to fit with the hand print. This is a technique I’d never thought of using, but has really given me a lot of ideas for creating 3D prints which are post-processed like this into a stronger shape than if they were 3D printed in their final more complex form. I think some of the simple enclosures I’ve made in the past could be much stronger if considered more like a sheet-metal part, although then this begs the question why not just laser cut the design? Well in the case of this e-NABLE prosthetic, there are some 3D details for snapping in other pieces, which could not be done using a 2D process like laser cutting. This would be important to consider if using this process with 3D printing, but it’s certainly an interesting technique worth further experimentation.

If you’ve done something like this yourself, or have ideas for thermoforming a 3D print, leave me a comment.

– Posted by James Novak