Robot Picasso Kickstarter Final Week!

The final week of my very first Kickstarter campaign is now here, and to celebrate I’ve put together a brand new video demonstration of what Robot Picasso can do. This time, rather than using the Solidoodle 3D printer to draw on paper as in the first video, this demonstration shows how you can collaborate with Robot Picasso and use the digital DXF file of your custom artwork to import into software like Adobe Illustrator. From there anything’s possible, including using the design to laser cut into any material!

robot-picasso-laser-cut

It’s been an exciting roller coaster so far, and the hard work is yet to begin making and shipping all the artworks. It’s been challenging being overseas for nearly 2 weeks on a pre-booked holiday – I haven’t been able to spend as much time as I wanted promoting and creating regular updates for the campaign. However it was also quite eye-opening to realise just how much can be done with a laptop and internet connection – the video demonstration was completely created from my hotel in Hawaii, giving you an idea of how versatile Robot Picasso really is. You can receive your own custom DXF file for just $15 AUD, and have it included in the eBook compilation which all backers receive. Great if you are digital savvy and have access to some cool toys like plotters, laser cutters, routers etc.

Please help me to share this campaign on social media, it would be awesome to reach 50 backers over this final week (currently at 32) and increase the amount of artwork in the eBook. If you’re not into getting a custom drawing, you can buy the eBook for just $8 AUD and have it emailed to you after all drawings have been produced. See if you can figure out what each drawing is!

– Posted by James Novak

Cowtech 3D Scanner – The Build

20160729_Cowtech Ciclop Build

3D scanning has featured a few times on my blog (eg. see my custom virtual reality headset which perfectly fits my face), so it was only a matter of time until I bought a scanner for myself. Earlier in the year Kickstarter convinced me to help fund the Ciclop 3D Scanner from Cowtech, a $99 open-source system that was impossible to refuse. Yep, $99!

Well here it is, built over a couple of days and making me feel like a kid again with a new kit of Lego. I bought the cheapest version of the scanner, choosing to 3D print the components myself (naturally!) which can be freely downloaded from Thingiverse. These worked really well, only a few areas where support material was time-consuming to remove, and were all done on the small build plate of the UP Plus 2. The top left photo shows most of these 3D printed parts (12 in total needed).

20160805_Cowtech BrokenAfter receiving the other scanner hardware from Cowtech this week, it was finally time to put this kit together – no simple task after I snapped one of the key parts early in the assembly process! You can see the 2 broken pieces of acrylic to the left, which are both from the long arm connecting the 2 main octagonally-shaped hubs in the middle photo at the top of the page. So far Araldite seems to be holding them, and this snapping seems to be a common problem people are reporting – maybe a bit better tolerances required in the laser cut pieces, or a different material that’s not quite so brittle.

Otherwise the assembly process has been quite straight forward, the video provided by Cowtech is very easy to follow, especially if you’re a little familiar with Arduino’s. There are some really clever details in the way nuts slot into the laser cut pieces and screws slide through the 3D prints that I’ve never seen before, so as a designer it was fun to discover these details. I really appreciate the tolerances for many of the different parts fitting together, from laser cut to 3D print to machined screws, I am honestly surprised how well they all came together for me. So in the top right image you can see the final result – I have to admit I feel like an extra 3D printed part is required to cap off the top above the camera, it doesn’t look right to me so this might be something I make myself soon.

The challenge I’m having now is that I can’t get my camera to be recognised by the recommended open-source software for the scanner, Horus. I’ve spent hours installing software and drivers, rebooting my computer, uninstalling, installing in a different order, rebooting… Nothing is working. Hmmm, a bit frustrating but as I’ve learned with these sorts of new products from Kickstarter, sometimes it can take some time for people to start posting solutions and updates as my order was dispatched quite early and there is just not much up on the forum yet. Hopefully soon!

Keep an eye out on my blog for updates, and hopefully soon some successful 3D scans!

– Posted by James Novak

Update 7/8/2016:

Settings That Work CroppedAfter some ideas from the Cowtech Facebook Group, I have solved the connectivity problem – hopefully it helps anyone else that reads this. Firstly the Cowtech Scanning Guide says to plug in the camera to set it up in Horus – but you actually need to plug in the entire scanner – 2 USB’s and power. I then went into the preferences, selected the appropriate camera and serial, then changed the Arduino type to “Arduino Uno” and clicked “Upload Firmware” (shown left). I had to close and then re-open Horus, but now it’s all up and running. Hopefully the rest of the calibration goes a little smoother. I think the instruction booklet from Cowtech needs to make this clearer, and include these preference changes.

Custom SUP Fin

20160125_Custom SUP Fin

I’ve recently bought my own Stand Up Paddle (SUP) board, an inflatable version from Flysurfer, which so far is working really well. But this isn’t a product review! My local paddling spots are all very flat, but the fins that came with the board are very surf oriented. This means that when paddling in flat water there is a lot of drag from the 2 outside fins which are angled out from the center line (see the middle photo), and the board doesn’t travel in a straight line – you have to swap hands every few strokes. It’s not a huge deal, but I was curious to see what difference a large single fin would make since most boards I’ve seen use this. Unfortunately Flysurfer don’t sell them, so it was time to get making!

All I did was use my flatbed scanner to capture the original fin shape (the black one in the right photo), trace the top section in Adobe Illustrator since this is the critical detailing to fit with the board, and then add my own shape for the fin based on the shape of some popular fins online. No 3D CAD required. This was laser cut from a piece of clear acrylic, and I used a file and sandpaper to add some shape to the edges. Voila.

Unfortunately I can’t give this particular design 2 thumbs up, it doesn’t perform quite as well as I expected. While it seems a little easier to glide through the water, the fin doesn’t improve the boards ability to hold a straight line – I think it’s a little bit loose in the socket and tilts on an angle in the water. The acrylic might be a little too thin, but it’s a start. I’ll make some tweaks and try again – it’s nice to make something that’s not 3D printed for a change.

If anyone has any experience playing around with different fin configurations or shapes I’d love to hear from you – I’ve read a few interesting articles from SUPguide.com and Neverbored but there’s only so much you can learn by reading, especially when you have to make your own fins because of the limitations of the inflatable board.

– Posted by James Novak

A High-Tech Plywood Box?

20150712 IR Box

Following on from my post a few days ago, the gluing of the plywood box is now complete 🙂 I had to take it nice and slow with a couple of the pieces slightly bowed, and as you can see in the third image, I had to use a few small nails along a couple of edges to hold it all in place while the glue dried. A few good clamps also helped do the trick as well, as in the first image.

I’ll admit my 3D modeling wasn’t perfect; I had originally designed the box in Solidworks with a 3mm sheet thickness, but had to change this on the fly to 3.5mm based on the available plywood sheets. Somewhere during this process a few dimensions got thrown out of alignment (obviously my parametric relationships need some work!) so the 2 end pieces needed a couple of the tabs to be slightly trimmed back – nothing a saw and a file couldn’t fix, although my pride might need a bit more work!

If you look closely at the middle image you’ll see some wires coming out of the box – these are infrared sensors that I’m going to have a play with connected to my Arduino. Without giving too much away just yet, I’m planning to use this to play around with some CAD files, using Rhino + Grasshopper + Firefly… the rest I’ll leave to your imagination!

– Posted by James Novak

2D for a Change

2015-06-30 Laser Cut

As a departure from my usual 3D printing talk today’s post is going a little 2D, featuring laser cutting. As part of my PhD research I’ve been playing around with all sorts of sensors, Arduino, Rhino, Grasshopper… and plenty more (you can check out the last post here). One of my latest experiments needs a box to mount some sensors inside, so forming a custom box with mounting holes seemed a great excuse to think a little 2D for a change.

The pieces were designed in Solidworks, and only 2 unique pieces were really required – the main length and the end piece. These were just copied and tweaked to form the slight variations. There’s something nice about the concept of combining the natural timber with some high-tech sensors, so 3.5mm plywood was chosen as the best material. The dimensions I used were to make optimum use of the sheet size with minimum waste, as you can see in the first image. Overall the cutting of all pieces wouldn’t have taken more than 10 minutes, and while the laser didn’t always cut completely through the sheets, it was nothing a bit of brute force and a file couldn’t fix. There’s also a slight bow in a couple of the pieces, so gluing them to form the box might be a little tricky – I’m hoping a few small nails might do the trick without splitting the laminated veneers apart. I’ll add some photos of the final result when it’s complete.

– Posted by James Novak