Popular 3D Prints on Thingiverse

Anyone with a 3D printer will no doubt be familiar with Thingiverse, an online database of files that can be searched, downloaded and 3D printed; a universe of things. I’ve been using it for 7 years, and you can find many of my projects from this blog available there.

While the platform isn’t without its issues, particularly over the last year or so, it is still the largest 3D printing file database with over 1.9 million files at this time of writing – you couldn’t print that much stuff in a lifetime!

Because of the scale, many researchers have used Thingiverse as a way of understanding how people engage with 3D printing and file sharing, and beginning in 2018, I wanted to understand the characteristics of the most popular files on Thingiverse. My research paper has just been published called “500 days of Thingiverse: a longitudinal study of 30 popular things for 3D printing” and as the name suggests, involved tracking 30 things over a 500 day period.

The image at the top is one of the graphs from the paper that compares the downloads per day for these 30 things over time. At the start of the study, a new design called the Xbox One controller mini wheel had just been released and was all over social media, attracting a lot of attention and downloads. This equated to 698 downloads per day. However, this momentum didn’t last. In comparison, well established designs like #3DBenchy continued to increase in downloads per day, and during the period of this study, #3DBenchy became the first thing on Thingiverse to be downloaded over 1 million times! These numbers are beginning to approach figures on more mainstream social media and image/video sites, showing just how popular 3D printing has become. And keep in mind, this is just one of many file sharing websites for 3D printing, a topic that was part of a previous research paper I wrote with friend, colleague and fellow maker, Paul Bardini.

If you’re interested in all the details, I have shared a preprint version of the paper which can be freely accessed. Additionally, all of the raw data can be freely accessed if you’re interested in diving into the nitty gritty details, or even continuing to add to what I started. I hope this provides some insights into the scale of making and 3D printing, and some of the trends that drive the most popular files on Thingiverse.

– Posted by James Novak

3D Printed Pineapple Light

3D printing light covers and lamps are always fun projects, you can’t really go wrong.

Continuing from a previous post where I outlined the process of designing sea urchin light covers for my house, I’ve still been wanting to design another light cover to mix things up so each room isn’t the same. Enter the pineapple light! 🍍

Unlike the previous process of designing the sea urchin light from scratch using a 3D scan, this time I was able to find something on Thingiverse that was almost perfect – this model of a pineapple. The bottom part had a really nice geometric pattern that saved me hours of mucking around in CAD and designing the same thing from scratch. This is one of the things I love about the 3D printing community – the open sharing of 3D models to be remixed (also known as a mashup) just like a song or video into something new and creative. You can read more about remixing in one of my previous tutorials.

Similar to the sea urchin light, all the pineapple needed was to be scaled to the right size, hollowed, given a thickness, and have a neck piece added to connect with the light fitting. This neck piece was directly imported from my previous project in Meshmixer (free CAD software), and both pieces were joined together. Nice and easy!

Just like the sea urchin light, these pineapples were 3D printed on a Prusa i3 MK3S in a natural PLA from eSun – it’s a translucent material which I found from previous experiments to work really well for light covers when given a very light dusting of white spray paint. The painted exterior still allows the light to shine through nicely, but just helps define the form better than the natural finish on its own. If you want to see exactly how this compares to the natural filament on its own, or a pure white PLA, check out my sea urchin light post. This design can also be 3D printed without any support material.

Best of all, you can download my pineapple light cover completely free from Thingiverse, Pinshape, Cults and MyMiniFactory! Just like the original design of the pineapple which helped me in this project, I hope this remix will help you in your own project – even if you don’t have the same size light fitting as me, with a bit of editing in Meshmixer or another CAD program, you can easily modify this design to suit your own needs. Enjoy.

– Posted by James Novak

3D Printing Pop Culture & Viral Objects

20190508 Pop Culture 3D Print

As regular readers of this blog will know, I’ve been involved with 3D printing, making, education and various online communities for a while now. Which is why it’s very exciting to share my latest piece of writing, a book chapter titled “The Popular Culture of 3D Printing: When the Digital Gets Physical” which I wrote with former colleague and fellow maker Paul Bardini from Griffith University.

As the name suggests, the chapter looks at the popular cultural context of 3D printing, rather than the more technical aspects featured in most academic writing. As makers, we are both really interested in the growth of 3D printing and spread of 3D printing files on platforms like Thingiverse, MyMiniFactory and others, so we got a bit scientific and collected some data. The results are very interesting!

Print

Firstly, one of the things we did was collect the total number of files available from a range of 3D printing file repositories, as well as other more general 3D file repositories. Above is the data we collected (on 26th August 2018) which clearly shows Thingiverse to be the largest specific 3D printing file website. This is no surprise given that the website began in 2008, well before most competitors, building a network effect that still seems to be going strong despite some of the most recent challenges Thingiverse has been experiencing. However, there are plenty of other much larger libraries of CAD files that could be searched for 3D printing files, and even though some will be specific to certain CAD software, there’s always a way to make these 3D printable.

Print

Given the size of Thingiverse, we then looked at the most popular designs on the platform, collecting data (you will have to check out the full chapter for this!), and then calculated the average downloads per day for these designs. The graph above shows this data against the date the design was uploaded to the platform. Some of the names you may recognise: #3DBenchy, Baby Groot, the XYZ 20mm Calibration Cube and the Xbox One controller mini wheel. But what does it all mean?

Well, the short story is that objects uploaded to Thingiverse today will be downloaded in higher volumes per day than objects uploaded earlier in Thingiverse’s history. The trend line is increasing, matching the growth of 3D printer ownership; more people are downloading more things, with the Xbox One controller mini wheel recording 700 downloads per day when it was newly released. However, #3DBenchy is by far the most downloaded design of all time, right now having been downloaded over 900,000 times on Thingiverse alone, as well as being available on almost every other 3D file platform. This has lead to our classification of it as a “viral object.” Similar to viral videos and viral media campaigns, a viral object extends these concepts into the physical world through 3D printing, being first spread rapidly through online file sharing communities, then turned into physical objects in their thousands despite each being made in a different location, by a different machine.

This raises some interesting questions:Β  A viral video or piece of advertising made up of digital bits can easily be deleted, but how do you delete a viral object made up of physical atoms? Simply discarding 3D prints into landfill is unsustainable, and new solutions are necessary that make recycling of 3D prints affordable and accessible to the masses. It is also worth looking at the quantities an object like #3DBenchy is being downloaded and 3D printed, which is clearly in a magnitude similar to injection moulding and the mass production paradigm that 3D printing is supposed to disrupt. While it’s useful to have an object to calibrate and compare 3D printers, it’s also interesting to see that people still want to print and own the same object, rather than being truly individual.

The trend for viral objects is certainly one to watch, and the chapter provides a detailed analysis of this and other emerging trends related to 3D printing and pop culture. If you’re interested in reading the chapter, you may use my author discount code “IGI40” to get a 40% discount, or if you’re at a university you may find you already have access through your library subscriptions. Paul and myself certainly welcome your feedback and thoughts πŸ™‚

– Posted by James Novak

Using Every Last Drop

IMG_20180917_Webcam 3D Print Mount

Perhaps it’s the result of spending 10 years as a poor uni student, but I really like to use every last drop of liquids: sauce, toothpaste, shampoo and yes, deodorant. Many of the roll-on style deodorants, such as those from Nivea, have a domed lid, meaning it’s impossible to tip them upside down as liquid is running low and store them so gravity can do its thing. In my mind, this is a design flaw in the packaging (although from Nivea’s point of view, this is a great way to keep people buying more products more often).

I had originally planned to create my own design to solve this problem, however, after a quick search on Thingiverse I was pleasantly surprised to see many people had already beat me to it! There are plenty of designs to choose from, and I decided on this helix design for its interesting form. Click here to download the file for yourself from Thingiverse.

The print took just over an hour to complete, and as you can see from the pictures, it does exactly what it promises. I also streamed the 3D print on my YouTube channel, so if you like watching the grass grow, here is an hour of entertainment just for you! Make sure you subscribe if you want to be alerted of the next live 3D print πŸ™‚

– Posted by James Novak

#3DBenchy, the Most Downloaded 3D Print

20180914_3DBenchy

If you are involved in 3D printing there’s no doubt you’ve at least heard of #3DBenchy, if not printed one, or two, or even more. What is #3DBenchy? Well, it’s a tug boat of course! But more than that, #3DBenchy has become like the “Hello World!” from coding, the go to 3D model to test out a new printer or setting. Why a tug boat? That’s a very good question, and the only real explanation is that it includes a number of features that challenge a printer including overhangs (e.g. roof) and a variety of angled surfaces. Also, it’s a little more interesting than a basic calibration cube or set of test prints.

#3DBenchy was developed by a company called Creative Tools, initially as an in-house calibration test for their own printers. On April 9th 2015, Creative Tools uploaded the design to Thingiverse for anyone to download for free, and the rest, as they say, is history. Since then the file has been downloaded over 600,000 times from Thingiverse alone, and can be found on pretty much any other 3D file sharing website. #3DBenchy even has its own website, Instagram profile, and Twitter account – talk about a famous 3D print!

I’ve never seen any need to jump on board the #3DBenchy bandwagon, however, I was recently writing up some research that required me to photograph a #3DBenchy, and I’m always up for an excuse to print something new. So here we are, #3DBenchy in hand, and given I used some relatively fast settings to get it printed in about 1 hour, I think the result is quite good. This one is the original #3DBenchy at full scale, printed without support. And of course my photos have been fed back onto Thingiverse as one of the 2788 makes of #3DBenchy, and one of 2961 posts on Instagram… and counting. Vive laΒ rΓ©volution!

– Posted by James Novak

Yes I Wrap, Don’t You?

20180831_3D Print Vase Wrap String

One of the common features of desktop 3D printing is the sharp, hard feel of plastic with that scratchy horizontal layered surface finish. Sure plastic has many benefits, but when you handle 3D prints all day long you sometimes forget that there are other textures in the world that are soft, delicate, pleasurable to touch. Enter the wrap, an experiment that softens those 3D prints in a crafty, hand-finished way.

For this project I downloaded the Customizable Twisted Polygon Vase from Thingiverse, which you will notice when you download is a solid block. This print takes advantage of a feature known as “vase mode” in many slicing programs, although if like me you are using Cura it’s called “Spiralize,” and you will need to activate it in your settings in order to have it available in your main screen settings. Basically the idea is that you can load any solid 3D model and automatically turn it into a vase-like shape i.e. a base and an outside wall without any interior or top surface. The outer wall is a single perimeter, which the printer continually extrudes in a spiralling/helical fashion as it works its way up the vertical height of your object. So no need to use a “shell” command in your 3D CAD modelling software, you can design a solid block and let the slicing software automatically create a single perimeter based on the extruder settings of any FDM 3D printer. A fun project in itself.

Phase 2 of the project was to use some wool yarn to wrap the exterior. What’s interesting about this process is that the layered surface finish of the 3D print actually helps hold the yarn/string in place, stopping it from slipping down the vase and helping align each rotation of the yarn. A relaxing project while you’re sitting in front of the TV or Netflix! The yarn I used was very fine so took quite a while, however you could easily use a thicker yarn to reduce the amount of effort to achieve a similar result. The result is really interesting; it keeps the layered appearance of a 3D print, yet is soft to the touch and provides a unique finish to the vase. Something you could easily customise with colours and different types of yarn materials. Ultimately, it creates an interesting combination of a highly digital process with a more craft-based process and material… Something worth a bit more experimentation I think.

If you give it a go, please share a photo with me, I’d be interested to see your results!

– Posted by James Novak

3D Printed Hooks

20180521_3D Print Hook

3D printing really does solve so many problems – previously I’ve replaced a small whisk in a milk frother, produced my own kitesurfing fins, 3D printed locking mechanisms for some stand up paddles, and made numerous enclosures for Arduinos. What did we do before 3D printing?

This is yet another example of the need for a unique part – some hooks to display some work in front of my office, which could attach to some vertical plywood fins without permanent fixings like screws or staples. The plywood is 17mm thick, which was the only dimension needed to create this hook design, and I’ve modelled the arms to be a maximum of 17mm apart, with aΒ 1ΒΊ draft angle to really hold on to the plywood towards the back of the arms which areΒ less than 17mm apart. This creates a good clamping force on the plywood. They are also designed so that they require no support material when 3D printing, making them fast and efficient to produce.

While it’s quite a unique case, I’ve decided to share the design on Thingiverse, PinshapeΒ andΒ CultsΒ  in case it’s of use to anyone, or even just a good starting point for your own design. You could even try scaling them in width to fit the dimension of your vertical board. Happy printing.

– Posted by James Novak

Ninjaflex Part 3 – Flexion Extruder Upgrade

20180515_Flexion Wanhao

This is the third post in a series about 3D printing with Ninjaflex, which initially began using the stock standard extruder on a Wanhao Duplicator i3 (click here to start at the beginning), before a 3D printed modification was trialled (click here for post 2), and now here we are with a completely upgraded extruder specifically for printing with soft materials.

Pictured above you can see some fancy red anodised components and exposed gears – this is the Flexion HT Extruder, a relatively expensive upgrade (US$179) which is about half the cost of the entire printer itself. ItΒ replaces the entire core of a standard single extruder; all that remains from the original is the stepper motor and cooling fans. So why upgrade?

Well as the previous posts discovered, the highly flexible nature of Ninjaflex (shore hardness of 85A) meant that it was difficult for the standard extruder to force down through the hotend and out the nozzle. Imagine taking a length of soft liquorice and trying to push it through a hole that is smaller than the liquorice diameter! As a result, after a few minutes of printing, it was common for the filament to begin looping out the back of the extruder. The Flexion extruder has much tighter tolerances around the filament the entire length it travels, so there is nowhere for the filament to go except down. Also, it has adjustable pressure using the round dial you can see with the knurled detail in the photo above – this means you can apply more force on the soft filament to maintain a strong grip against the stepper motor gear. By rotating the dial, you can quickly scale the pressure back when you change to a rigid filament like PLA, with 4 levels of variation possible and a grub screw to really dial in each setting. The design is completely open, (when it was assembled I initially thought something was missing!), which means you can see the filament and gears, which is great for maintenance and adjustment. And while I haven’t tried yet, according to the Flexion website the nozzle can handle higher temperatures than a standard extruder, up to 290Β°C, which is great for plastics like nylon and polycarbonate.

The photo at the top right is one of the first 3D prints done to test the abilities of the extruder, taking approximately 4 hours. It looks good from a distance, although there are some small gaps where we started with too much retraction and not enough flow – at this point we are still experimenting with settings to get the best results, currently trying 107% flow, 40mm/s print speed and 1mm retraction. If you are using a Flexion for Ninjaflex and have some reliable settings, I’d love you to post a comment and share them!

– Posted by James Novak

3D Printed Assemblies

20180420_3D Print Moving Assembly

One of the most interesting features of 3D printing is that it’s possible to print multiple parts in their assembled state, reducing the need to bring together a whole range of different pieces and assemble them using screws, snaps, glue etc. While this is normally easier using the Selective Laser Sintering (SLS) process, with a bit of experience and some clever design skills, it’s possible to 3D print moving assemblies on a basic desktop FDM machine.

Pictured above are 2 objects I’ve been wanting to 3D print for a long time as great examples of what can be done with an FDM machine. The first is called an Air Spinner and is free to download from Thingiverse. Due to the tolerances and angles between each part, no support material is needed, and you can literally start spinning each of the pieces straight off the printer, functioning like a gyroscope. A nice quick print, and a great demo piece. Below is a video I found of someone printing and spinning one so you can get the full effect.

The second print pictured to the right is a Planetary Gear Keychain, also free to download from Thingiverse. This one is much more of a test of your printer’s settings, the first time I printed it all of the pieces were completely fused together and impossible to free. Even this print required a knife to separate pieces that formed part of the first layer, with the squished plastic bonding them together as my nozzle was slightly too close to the print plate. This one is remixed from another design on Thingiverse which I recommend you check out for all the instructions to help get the best result, and read how other people achieved successful prints. Here’s a short video to see the planetary gears in action

If you’re looking for some fun prints to share with people, these 2 are very much recommended and relatively quick, although I’m still a very big fan of the Kobayashi fidget cube from one of my previous posts whichis another great assembled object. If you’ve got a favourite 3D printable assembly, leave me a comment/link below and I might add it to my list of things to make!

– Posted by James Novak