From bespoke seats to titanium arms, 3D printing is helping Paralympians gain an edge

Jeff Crow/AAP Image

Authors: James Novak, The University of Queensland | Andrew Novak, The University of Technology Sydney

** Please note: this is a copy of an article I wrote for The Conversation, published on 3rd September, 2021, and is shared under a CC-BY-ND license. You can access the original article by clicking here.**

Major sporting events like the Paralympics are a breeding ground for technological innovation. Athletes, coaches, designers, engineers and sports scientists are constantly looking for the next improvement that will give them the edge. Over the past decade, 3D printing has become a tool to drive improvements in sports like running and cycling, and is increasingly used by paralympic athletes.

The Paralympics features athletes with a diverse range of abilities, competing in a wide range of different categories. Many competitors use prosthetics, wheelchairs or other specialised components to enable them to perform at their best.

One interesting question is whether 3D printing widens or narrows the divide between athletes with access to specialised technologies, and those without. To put it another way, does the widespread availability of 3D printers — which can now be found in many homes, schools, universities and makerspaces — help to level the playing field?

Forget mass production

Mass-manufactured equipment, such as gloves, shoes and bicycles, is generally designed to suit typical able-bodied body shapes and playing styles. As such, it may not be suitable for many paralympians. But one-off, bespoke equipment is expensive and time-consuming to produce. This can limit access for some athletes, or require them to come up with their own “do-it-yourself” solutions, which may not be as advanced as professionally produced equipment.

3D printing can deliver bespoke equipment at a more affordable price. Several former paralympians, such as British triathlete Joe Townsend and US track athlete Arielle Rausin, now use 3D printing to create personalised gloves for themselves and their fellow wheelchair athletes. These gloves fit as if they were moulded over the athlete’s hands, and can be printed in different materials for different conditions. For example, Townsend uses stiff materials for maximum performance in competition, and softer gloves for training that are comfortable and less likely to cause injury.

3D-printed gloves are inexpensive, rapidly produced, and can be reprinted whenever they break. Because the design is digital, just like a photo or video, it can be modified based on the athlete’s feedback, or even sent to the nearest 3D printer when parts are urgently needed.


Read more: Paralympians still don’t get the kind of media attention they deserve as elite athletes


Harder, better, faster, stronger

An elite athlete might be concerned about whether 3D-printed parts will be strong enough to withstand the required performance demands. Fortunately, materials for 3D printing have come a long way, with many 3D printing companies developing their own formulas to suit applications in various industries – from medical to aerospace.

Back in 2016, we saw the first 3D-printed prosthetic leg used in the Paralympics by German track cyclist Denise Schindler. Made of polycarbonate, it was lighter than her previous carbon-fibre prosthetic, but just as strong and better-fitting.

With research showing sprint cyclists can generate more than 1,000 Newtons of force during acceleration (the same force you would feel if a 100-kilogram person were to stand on top of you!), such prosthetics need to be incredibly strong and durable. Schindler’s helped her win a bronze medal at the Tokyo games.

Denise Schindler on her way to a medal in Tokyo. Thomas Lovelock

More advanced materials being 3D printed for Paralympic equipment include carbon fibre, with Townsend using it to produce the perfect crank arms for his handbike. 3D printing allows reinforced carbon fibre to be placed exactly where it is needed to improve the stiffness of a part, while remaining lightweight. This results in a better-performing part than one made from aluminium.

3D-printed titanium is also being used for custom prosthetic arms, such as those that allow New Zealand paralympian Anna Grimaldi to securely grip 50kg weights, in a way a standard prosthetic couldn’t achieve.

Different technologies working together

For 3D printing to deliver maximum results, it needs to be used in conjunction with other technologies. For example, 3D scanning is often an important part of the design process, using a collection of photographs, or dedicated 3D scanners, to digitise part of an athlete’s body.

Such technology has been used to 3D-scan a seat mould for Australian wheelchair tennis champion Dylan Alcott, allowing engineers to manufacture a seat that gives him maximum comfort, stability and performance.

3D scanning was also used to create the perfect-fitting grip for Australian archer Taymon Kenton-Smith, who was born with a partial left hand. The grip was then 3D-printed in both hard and soft materials at the Australian Institute of Sport, providing a more reliable bow grip with shock-absorbing abilities. If the grip breaks, an identical one can be easily reprinted, rather than relying on someone to hand-craft a new one that might have slight variations and take a long time to produce.


Read more: 3 reasons why Paralympic powerlifters shift seemingly impossible weights


All these technologies are increasingly accessible, meaning more non-elite athletes can experiment with unique parts. Amateurs and professionals alike can already buy running shoes with 3D-printed soles, and 3D-printed custom bike frames. For those with access to their own 3D printer, surf finscycling accessories and more can be downloaded for free and printed for just a few dollars.

However, don’t expect your home 3D printer to be making titanium parts anytime soon. While the technology is levelling the playing field to a certain extent, elite athletes still have access to specialised materials and engineering expertise, giving them the technological edge.


This article was co-authored by Julian Chua, a sports technology consultant at ReEngineering Labs and author of the Sports Technology Blog.

3D Printing and COVID-19 in Data

Figure 2 Timeline

Following my previous post discussing some of the opportunities and challenges of using 3D printing to fill supply chain holes during COVID-19, I’m pleased to share the more detailed research I’ve been working on that supported my article in The Conversation.

Published here in an open access journal is an analysis of all 3D printing projects that were initiated during the first months of the pandemic. As a summary, the image above shows the timeline of these projects, and the types of products that were being produced. In total, 91 projects were documented in my research, with only 7 of these occurring before the World Health Organization (WHO) declaration of a pandemic on March 11. Most of these were based in Asia. The remaining 84 projects (92%) followed the declaration as the pandemic spread around the world and health systems rapidly struggled to meet the demand.

The figure above also shows that 60% of projects were for personal protective equipment (PPE) such as face shields and goggles, while 20% were for ventilator components, and a further 20% were for miscellaneous projects such as hands-free door openers.

200523 3D Print COVID-19 Data

Of the PPE projects, 62% were for face shields as shown above in the left chart. This includes the popular Prusa RC3 face shield pictured in my previous post, although the first documented face shield actually occurred on February 25 from The Hong Kong Polytechnic University. Obviously face shields are a relatively low risk product compared to components for a ventilators, and makers could easily 3D print these on desktop 3D printers.

The chart on the right above documents the types of 3D printing technologies used for each of the 91 projects. Perhaps it is no surprise that fused filament fabrication (FFF) was the most used, accounting for 62% of projects. Resin printing with stereolithography (SLA) or digital light processing (DLP) was the next most popular for 10% of projects, followed by multi jet fusion (MJF=9%), selective laser sintering (SLS=8%), continuous liquid interface production (CLIP=2%), and concrete was used in one project in China to 3D print concrete isolation houses for Xianning Central Hospital in Hubei. Interestingly, 8% of projects did not specify the 3D printing technology being utilised, suggesting that some projects lacked documentation or were reported by the media simply as “3D printing.”

While this review provides an overview of the broad trends related to the 3D printing of health and medical products during the first months of the COVID-19 pandemic, ongoing research is needed to continue monitoring 3D printed products throughout the pandemic to understand longitudinal trends. For example, does the initial hype from March subside and a more stable pattern of research and collaboration continue through April and the following months? Do projects consolidate and merge, with others ending as regulations tighten, or traditional supply chains stabilise?

It will also be necessary to analyse 3D printed products and validate them, particularly as the health crisis continues for months or even years. Initial 3D printing projects, while well intentioned, were largely unregulated and a reflexive response to direct and immediate needs. As supplies stabilise, and the infection curve flattens, more time and resources can be devoted to research, building upon the NIH 3D Print Exchange database of approved designs, perhaps developing an approved FDA or TGA database of designs as well as 3D print technologies and materials. These may be necessary for any future outbreaks of the virus, as well as allowing for better preparation for future health, humanitarian and natural disaster crises that may require a similarly rapid response to equipment shortages.

If you want to find more of the data and read the detailed analysis, please read the article here. Additionally, you can freely access all of the data I collected for this research, and continue building off it, by accessing it on Figshare. I hope it is useful for building our understanding of how 3D printing can be deployed during a health crisis.

– Posted by James Novak

Millions of products have been 3D printed for the coronavirus pandemic – but they bring risks

Header Image High Res

** Please note: this is a copy of an article I wrote for The Conversation, published on 5th May, 2020, and is shared under a CC-BY-ND license. You can access the original article by clicking here.**

With the COVID-19 pandemic, an urgent need has risen worldwide for specialised health and medical products. In a scramble to meet demand, “makers” in Australia and internationally have turned to 3D printing to address shortfalls.

These days 3D printers aren’t uncommon. In 2016, an estimated 3% of Australian households owned one – not to mention those available in schools, universities, libraries, community makerspaces and businesses.

3DEC Lab

A collection of desktop 3D printers in the Deakin University 3DEC lab. James Novak

Across Europe and the United States, access to essential personal protective equipment (PPE) remains a concern, with nearly half of all doctors in the UK reportedly forced to source their own PPE.

In Australia, reports from March and early April showed hospital staff reusing PPE, and health-care workers sourcing PPE at hardware stores due to shortages.

The global supply chain for these vital products has been disrupted by widespread lockdowns and reduced travel. Now, 3D printing is proving more nimble and adaptable manufacturing methods. Unfortunately, it’s also less suited for producing large numbers of items, and there are unanswered questions about safety and quality control.

Sharing is caring

One of the earliest examples of 3D printing being used for pandemic-related purposes is from mid-February. One Chinese manufacturer made 3D-printed protective goggles for medics in Wuhan. With 50 3D printers working around the clock, they were producing about 300 pairs daily.

Designers, engineers, students, manufacturers, doctors and charities have used 3D printing to produce a variety of products including face shields, masks, ventilator components, hands-free door openers and nasal swabs.

Many designs are freely shared online through platforms such as the NIH 3D Print Exchange. This US-based 3D printing community recently partnered with the Food and Drug Administration (FDA) and the Department of Veterans Affairs, to assist with validating designs uploaded by the community. So far, 18 3D-printable products have been approved for clinical use (although this is not the same as FDA approval).

Such online platforms allow makers around the world not only to print products based on uploaded designs, but also to propose improvements and share them with others.

Just because you can, doesn’t mean you should

In a public health crisis of COVID-19’s magnitude, you may think having any PPE or medical equipment is better than none.

However, Australia’s Therapeutic Goods Administration (TGA) – our regulatory body for medical products – has not yet endorsed specific 3D-printed products for emergency use during COVID-19. Applications for this can be made by manufacturers registered with the TGA.

However, the TGA is providing guidelines which designers, engineers and manufacturers are working with. For example, Australian group COVID SOS aims to respond to direct requests by frontline medical workers for equipment they or their hospital need. So, local designers and manufacturers are directly connected to those in need.

3D printing provides a means to manufacture unique and specialised products on demand, in a process known as “distributed manufacturing”.

Unfortunately, compared with mass production methods, 3D printing is extremely slow. Certain types of 3D-printed face shields and masks take more than an hour to print on a standard desktop 3D printer. In comparison, the process of “injection moudling” in factory mass production takes mere seconds.

That said, 3D printing is flexible. Makers can print depending on what’s needed in their community. It also allows designers to improve over time and products can get better with each update. The popular Prusa face shield developed in the Czech Republic has already been 3D printed more than 100,000 times. It’s now on its third iteration, which is twice as fast to print as the previous version.

Prusa RC3 Face Shield

A Prusa RC3 face shield 3D printed on a desktop 3D printer. James Novak

Opportunity vs risk

But despite the good intent behind most 3D printing, there are complications.

Do these opportunities outweigh the risks of unregulated, untested product used for critical health care situations? For instance, if the SARS-CoV-2 virus can survive two to three days on plastic surfaces, it’s theoretically possible for an infected maker to transfer the virus to someone else via a 3D-printed product.

Medical products must be sterilised, but who will ensure this is done if traditional supply chains are bypassed? Also, some of the common materials makers use to 3D print, such as PLA, aren’t durable enough to withstand the high heat and chemicals used for sterilisation.

And if 3D-printed products are donated to hospitals in large batches, identifying and treating different materials accordingly would be challenging.

For my research, I’ve been tracking 3D-printed products produced for the pandemic. In a soon-to-be-published study, I identify 34 different designs for face shields shared online prior to April 1. So, how do medical practitioners know which design to trust?

If a patient or worker is injured while wearing one, or becomes infected with COVID-19, who is responsible? The original designer? The person who printed the product? The website hosting the design?

These complex issues will likely take years to resolve with health regulators. And with this comes a chance for Australia – as a figurehead in 3D printing education – to lead the creation of validated, open source databases for emergency 3D printing.

– Posted by James Novak

Read more: Can 3D printing rebuild manufacturing in Australia?

3D Printing Pop Culture & Viral Objects

20190508 Pop Culture 3D Print

As regular readers of this blog will know, I’ve been involved with 3D printing, making, education and various online communities for a while now. Which is why it’s very exciting to share my latest piece of writing, a book chapter titled “The Popular Culture of 3D Printing: When the Digital Gets Physical” which I wrote with former colleague and fellow maker Paul Bardini from Griffith University.

As the name suggests, the chapter looks at the popular cultural context of 3D printing, rather than the more technical aspects featured in most academic writing. As makers, we are both really interested in the growth of 3D printing and spread of 3D printing files on platforms like Thingiverse, MyMiniFactory and others, so we got a bit scientific and collected some data. The results are very interesting!

Print

Firstly, one of the things we did was collect the total number of files available from a range of 3D printing file repositories, as well as other more general 3D file repositories. Above is the data we collected (on 26th August 2018) which clearly shows Thingiverse to be the largest specific 3D printing file website. This is no surprise given that the website began in 2008, well before most competitors, building a network effect that still seems to be going strong despite some of the most recent challenges Thingiverse has been experiencing. However, there are plenty of other much larger libraries of CAD files that could be searched for 3D printing files, and even though some will be specific to certain CAD software, there’s always a way to make these 3D printable.

Print

Given the size of Thingiverse, we then looked at the most popular designs on the platform, collecting data (you will have to check out the full chapter for this!), and then calculated the average downloads per day for these designs. The graph above shows this data against the date the design was uploaded to the platform. Some of the names you may recognise: #3DBenchy, Baby Groot, the XYZ 20mm Calibration Cube and the Xbox One controller mini wheel. But what does it all mean?

Well, the short story is that objects uploaded to Thingiverse today will be downloaded in higher volumes per day than objects uploaded earlier in Thingiverse’s history. The trend line is increasing, matching the growth of 3D printer ownership; more people are downloading more things, with the Xbox One controller mini wheel recording 700 downloads per day when it was newly released. However, #3DBenchy is by far the most downloaded design of all time, right now having been downloaded over 900,000 times on Thingiverse alone, as well as being available on almost every other 3D file platform. This has lead to our classification of it as a “viral object.” Similar to viral videos and viral media campaigns, a viral object extends these concepts into the physical world through 3D printing, being first spread rapidly through online file sharing communities, then turned into physical objects in their thousands despite each being made in a different location, by a different machine.

This raises some interesting questions:  A viral video or piece of advertising made up of digital bits can easily be deleted, but how do you delete a viral object made up of physical atoms? Simply discarding 3D prints into landfill is unsustainable, and new solutions are necessary that make recycling of 3D prints affordable and accessible to the masses. It is also worth looking at the quantities an object like #3DBenchy is being downloaded and 3D printed, which is clearly in a magnitude similar to injection moulding and the mass production paradigm that 3D printing is supposed to disrupt. While it’s useful to have an object to calibrate and compare 3D printers, it’s also interesting to see that people still want to print and own the same object, rather than being truly individual.

The trend for viral objects is certainly one to watch, and the chapter provides a detailed analysis of this and other emerging trends related to 3D printing and pop culture. If you’re interested in reading the chapter, you may use my author discount code “IGI40” to get a 40% discount, or if you’re at a university you may find you already have access through your library subscriptions. Paul and myself certainly welcome your feedback and thoughts 🙂

– Posted by James Novak

3D Printing Education Book

190112 james novak lecture

As many readers will know, this blog came about when I started my post-graduate studies at university focusing on 3D printing. My knowledge allowed me to get into lecturing, and part of this role has allowed me to run workshops for the community, including school teachers, secondary students, and the broader public. It turns out these experiences have taught me a thing or two about running 3D printing workshops in short time-frames, often with people who have never seen a 3D printer in action, and has lead to me publishing a chapter in a book detailing how I organise a one-day 3D printing workshop.

190112 3d print education book

The book is called Interdisciplinary and International Perspectives on 3D Printing in Education, and includes 14 chapters from leaders around the world on the topic of 3D printing in education. My particular chapter is called Re-Educating the Educators: Collaborative 3D Printing Education, and calls attention to some of the many real challenges that plague teachers who are attempting to adopt 3D printing in the classroom. The chapter starts with a summary of how Australian schools are adopting the technology, and moves on to new research and peer-reviewed literature about how short, intensive courses are helpful in offering teachers meaningful training in regards to 3D printing. The later section of the chapter provides the organisational structure and hands-on activities I use in my workshops, and is hopefully useful to many other people who are running training programs for teachers and others interested in 3D printing.

A big thank you to Sarah Saunders at 3dprint.com for writing a great article about my research which you can read here. The article provides a nice summary of the book which I hope will help it reach a wide audience, as there is not enough material available for teachers, curriculum planners and education researchers wrestling to bring 3D printing and other technologies into the classroom. This book at least goes some way to presenting the latest research ideas and data to fill this gap.

Please help spread the word to anyone who may benefit from this book on 3D printing in education, and use my 50% discount code “IGI50” to purchase the whole book, or just my chapter, at a generous discount 🙂

– Posted by James Novak