3D Printed Metamorphosis

20170819_3D Butterfly

3D printing insects and creatures is nothing new, but maybe the months written on the image above indicates something more is going on with these 3D prints…

The 3D models of the caterpillar and butterfly are in fact generated by monthly step data collected on my old Garmin Vivofit – no design (or designer!) required. This is all an experiment to explore how non-designers may be able to use 3D printers without needing to learn complex CAD software, or sit on websites like Thingiverse and download random things just for the sake of printing. With the proliferation of activity trackers and smart watches gathering this data, perhaps there are creative ways for software to generate rewards from this data, which can be sent to a 3D printer and turned into something tangible?

Garmin Steps

I won’t go into all the details and theories right now, this work will be presented at the Design 4 Health conference in Melbourne this December. Visitors will even be able to input their own daily, monthly or yearly step goals, along with their actual steps achieved, and generate their own rewards. This is all controlled in Rhino with Grasshopper using some tricky parametric functions to automatically grow a caterpillar into a butterfly; if the steps achieved are below the goal, you will have a caterpillar, with the number of body segments growing depending on the percentage of achievement towards the goal. If the goal has been exceeded, a butterfly will emerge and grow bigger and bigger as the steps achieved continue to increase over the goal. You can see the results for a number of months of my own data tracking in the image above.

The 3D prints are being done in plastic for the exhibition, the examples above done on UP Plus 2‘s, however there’s no reason a future system couldn’t use chocolate or sugar as an edible reward for achieving your goals! I think it will take some interesting applications of 3D printers such as this to ever see a 3D printer in every home as some experts have predicted. But as anyone with a 3D printer knows, it will also take far more reliable, truly plug-n-play printers to reach this level of ubiquity. Time will tell.

– Posted by James Novak


Giant 3D Printed SUP Fin

20170511_3D SUP Fin

Behind the scenes I’ve been working on a Stand Up Paddle (SUP) fin project for quite a while now, 3D printing many prototypes, and more often than not, failing! There is more to this project than meets the eye, but for now the details are under wraps. However I thought it might be interesting to share some of the 3D prints in case anyone feels inspired to give it a go themselves.

The design pictured above is the first one that worked successfully without breaking or having other technical issues. Printed in 4 pieces on my Cocoon Create due to the size, it required a bit of gluing, and as you can see from the pink highlight, a bit of gap filling with a 3Doodler Pen (if you want to know more about using a 3D printing pen as a gap filler, check out one of my previous posts all about it). As a result the fin is about 400mm long, huge compared to the fin that came with the board (which for any SUP fans out there is a Slingshot G-Whiz 9’4″)

20170511_3D SUP Fin

These images show some of the breakages I’ve had due to layer delamination – unfortunately the optimal way to print the 4 pieces in terms of minimising support material and warping is vertical, however the optimal orientation for strength is laying down on the flat sides (similar to the image on the right). A bit of an oversight on my part I’ll admit, however I was genuinely surprised how much force the flat water put on the fin. Another issue may be the minimal infill, which was also beefed up in my later prints to add internal strength. There is always a delicate balance between print orientation, layer strength and infill in 3D printing, to name just a few!

The main thing is that the fin prototype now works, and I may have a more advanced version being printed using Selective Laser Sintering (SLS) as I write this… If you keep an eye on my blog by subscribing below, you may just get to see where this project is going 🙂

– Posted by James Novak

InMoov Custom Mobile App

It’s been a while since posting about the InMoov robot hand I started building last year. Previously I had everything assembled and was using some direct controls in Grasshopper (plugin for Rhino) to test and tweak the movements of the fingers and wrist (click here to see the last video). That was fun, but not as fun as being able to control the fingers wirelessly from across the room!

Using MIT App Inventor, I’ve created a very basic mobile app that now allows the fingers and wrist to be controlled on my phone using a Bluetooth connection to the Arduino board. It’s nothing fancy right now, just some simple sliders that control the servos, but now that the basics are working some more automated movements could be set up eg. by using the built-in sensors of the phone, movements could be controlled by simply tilting the phone.

20161203_InMoov Display

In order to display the working InMoov hand at the CreateWorld Conference last year, I  also built a display box from plywood since the arm is not really attached to anything and there are a lot of electronics dangling around that are a bit too messy for display. It actually makes moving the hand around and working on it quite a bit easier now since it’s raised up as well. If I had files for this case I would share them, but I went old-school for this one and just created it freehand with a jigsaw – I’m not completely reliant on digital manufacturing (yet!). Inside the box on the right are all the messy electronics, and a hole for the Arduino USB cable to reach through to connect to computer when needed.

I’ve also 3D printed a stamp with my name and the edditive logo to “tag” this project. Using 3D printing to make custom stamps is something I wrote about in one of my first ever blog posts, click here to take a trip back in time. It’s always the little details that bring a project to life for me.

– Posted by James Novak

Robot Picasso Kickstarter Final Week!

The final week of my very first Kickstarter campaign is now here, and to celebrate I’ve put together a brand new video demonstration of what Robot Picasso can do. This time, rather than using the Solidoodle 3D printer to draw on paper as in the first video, this demonstration shows how you can collaborate with Robot Picasso and use the digital DXF file of your custom artwork to import into software like Adobe Illustrator. From there anything’s possible, including using the design to laser cut into any material!


It’s been an exciting roller coaster so far, and the hard work is yet to begin making and shipping all the artworks. It’s been challenging being overseas for nearly 2 weeks on a pre-booked holiday – I haven’t been able to spend as much time as I wanted promoting and creating regular updates for the campaign. However it was also quite eye-opening to realise just how much can be done with a laptop and internet connection – the video demonstration was completely created from my hotel in Hawaii, giving you an idea of how versatile Robot Picasso really is. You can receive your own custom DXF file for just $15 AUD, and have it included in the eBook compilation which all backers receive. Great if you are digital savvy and have access to some cool toys like plotters, laser cutters, routers etc.

Please help me to share this campaign on social media, it would be awesome to reach 50 backers over this final week (currently at 32) and increase the amount of artwork in the eBook. If you’re not into getting a custom drawing, you can buy the eBook for just $8 AUD and have it emailed to you after all drawings have been produced. See if you can figure out what each drawing is!

– Posted by James Novak

My First Kickstarter Goes Live!

I don’t normally use my blog to promote or sell anything, but I figure for the launch of my first Kickstarter campaign I can make a small exception! Besides, it’s actually developed from some of my previous posts where I hacked my useless Solidoodle Press 3D printer to draw images and had some fun using a Wii Nunchuck controller to manually move the extruder.

Through the month of January Kickstarter are running the Make 100 Challenge, and I was inspired to set something up quickly that would be a bit of fun for both myself and potential backers. The idea of the challenge is to get something off the ground that is limited to 100 editions, so it’s inspiring to see a lot of new projects that might not normally launch on Kickstarter, many of them quite creative and artistic. That’s where I’ve pitched my Kickstarter – something a bit unusual and creative, yet fitting in with my interests of customization, hacking, digital manufacturing, algorithms, coding, parametric design, CAD… All the fun stuff.

On paper the idea is relatively simple – send me a photograph, I use some software to generate a Picasso-like line drawing, and that drawing gets sent to my hacked Solidoodle Press to be drawn on paper. But hopefully the video shows that the process is a little more complex than that, and quite interesting to watch.

I would love you to take a look, share the link, or if you’re really interested help get this project off the ground with funding levels starting at only $8 for the final eBook compilation. Whatever happens it’s been a great experience to put this campaign together.

– Posted by James Novak

22/1/2017 UPDATE: To thank everyone for your support and reaching the 200% funding milestone, here’s a new short video showing what happens when Robot Picasso draws a cliff-top building.

Robot Picasso also has a new Facebook Page you can follow to keep up to date with the latest developments. Let’s keep the momentum of this campaign and try and get 100 unique drawings!

InMoov Comes to Life

Look! It’s moving. It’s alive. It’s alive… It’s alive, it’s moving, it’s alive, it’s alive, it’s alive, it’s alive, IT’S ALIVE! – Frankenstein.

Yes finally the InMoov robot arm I’ve been slowly printing and assembling is complete and functioning with only the occasional little hiccup. I thought I was really close in my last post where I had assembled all the 3D prints and electronics, but it is definitely the last 10% that takes the most work.

Tensioning the braided lines just right and tying them to the servo’s is a painstaking task, especially in the heatwave we’ve been having in Australia, where you’re trying to resist the urge to wipe sweat from your face while you tie the knot just right… I felt a bit like a surgeon out in a humid jungle performing emergency surgery. A few little broken bits along the way as well from prints splitting or glue not holding, so it’s a relief to finally iron out all the kinks and start playing with the controls.

As you’ll see in the video, I’m using Grasshopper (plugin for Rhino) with the addition of Firefly to control the hand movements at the moment – if you’ve followed my blog for a while you’ve seen multiple demo’s of this software and why I think it’s so good, so I won’t bore you here (if you’re interested check out my project which was displayed at Design Philadelphia 2015). But it basically means I can manually adjust the servo’s in real-time using a simple slider for each finger, or connect fingers to the one slider to control them all at once and create a fist for example. It really makes those final tweaks to the servos easy.

I hope you enjoy seeing this arm come to life – it’s quite inspiring when you see it in real life, especially if you’re familiar with 3D printing and the time it takes just to print all of these parts. Now I can finally start modifying this project and experimenting with the controls, the build is only just the beginning for this robot.

– Posted by James Novak

InMoov No Longer InPieces


Over the past couple of months my build of the InMoov robotic arm has continued to progress slowly in the background, until now I find myself near the end. So about time for a little update on the build since my last post where I only had the arm and wrist pieces printed and partially assembled.

Now that the hand and fingers are assembled this is really starting to look cool, with a good range of movement and nice details controlling these movements. Let me say (if I haven’t before) that this is really not a project for the feint of heart – sure you might get lucky and be able to 3D print all of the parts without a hitch (although if you 3D print as much as me you know that for all of these successful prints assembled into the hand, there are many more failures!), but much of the challenge is in having the tools and patience to assemble them together properly. Each joint has needed filing, drilling of holes, gluing, even some acetone to clean up some of the rough surfaces to save reprinting, and of course these processes have been repeated numerous times. But that’s what I love about a project like this, you get to understand how every piece works.


Threading the Spectra braided line (I found a roll of 180lb 0.7mm Spectra quite cheap on Ebay) again requires the patience of a surgeon and a nice pointy set of tweezers, but I’m really loving how I can already start manually controlling the fingers by pulling on the lines. When doing this I found that some of the fingers were stiff and required a lot of force to move, so again you need to be prepared to take things apart and file them down before gluing anything into place, or the servo’s just won’t cope. I’ve found a little bit of lithium grease to be useful to help prevent binding of a few of the joints, but most of them are working quite smoothly without, pinned together with 3mm filament as suggested in the build instructions (so simple if you have access to some of the larger diameter stuff).

Next step is to connect the Spectra lines to the servo’s, which I’ll admit I’ve been nervous about since getting this right is critical, and then it should be up and running! I’ve bought an adjustable power supply to give the servo’s the power they need, seems like they can draw a lot of current when they move, far more than the Arduino/computer can give, so hopefully my next post will have a video of it moving 😀

– Posted by James Novak

3D Printing in Europe


Hello from Europe! It’s been a few weeks since my last post but that’s because I’ve been traveling around Europe in a part-holiday/part-professional frenzy. Now that I’ve seen quite a lot of 3D printing it’s about time I put together a bit of a summary for you, in case you find yourself looking for some nerdy escapes when you’re next in Europe.

One of the best things I organised was a private tour of the Materialise headquarters in Leuven, Belgium, which you can see photographed above. This is the company responsible for 3D printing my bicycle, and indeed the primary reason for my trip, but more on that shortly. Unfortunately I don’t have any other photos since everything is top secret once you walk through the doors – not surprising since they are responsible for developing many of the latest technologies in the industry. I was shown facilities like the finishing room where prints were manually cleaned and polished for certain projects, the SLS room full of different sized machines printing polyamide, the SLA room where my bike was actually printed, and the MGX display room full of many well-known 3D prints (click on the link to see many of these designs). Very cool to see what actually happens once you upload a design and click the order button on the i.materialise website. The lamps in the right image are called the Tulip Lamp by Peter Jansen.


I then jumped across the border to Eindhoven in the Netherlands to visit Shapeways, the other large 3D printing company who I regularly use for 3D printing, and have been using since 2010. A totally different vibe! Whereas Materialise are very research-driven and the facility is quite clinical, walking into the Shapeways foyer (pictured above) was similar to what I imagine Google to be like – an open-plan space with communal kitchen and glass-walled offices, music playing, bright colours and a foosball table. Once again when we walked through the “portal” in the middle image photos were not allowed, but we saw some very similar equipment and processes to Materialise. This is a great tour to do since it runs on the last Friday of every month, you don’t need to know someone and arrange a tour yourself – just follow this link to their Meetup site for dates and times. You also get a nice little keyring souvenir (above right image), and can hang around to chat to the team and have some nibbles.


Surprisingly I came across 3D printing in some very unplanned places – firstly this “Filament Pavilion” at the V&A in London, which will be there until November 6th 2016. Talk about a massive 3D print, this structure is still growing each day! Basically this is a cross between 3D printing and weaving, with a giant robotic arm wrapping filament around preformed hexagonal structures, each time in a different pattern based on sensor data. It certainly shows how this technology can be applied to Architecture, it seems to be quite lightweight and delicate unlike most of the concrete-based 3D prints I’ve normally seen in Architecture which use extrusion and seem very rough both in finish and detail.


Another museum and some more 3D prints which I was not expecting to see – this time the Stedelijk Museum in Amsterdam. On the left are a couple of the 3D printed ceramic pieces by Olivier Van Herpt, definitely the coolest ceramic prints I’ve come across and quite large in scale. I really like how the layers are actually celebrated in these prints and create a unique textural element to the pieces. Worth looking at the link to his profile for more details about how he created his own ceramic 3D printer. On the right are some full-sized chairs 3D printed by Dirk Vander Kooij, again created with a custom made 3D printer and printed from recycled plastics. It really does seem like 3D printing is everywhere!


Lastly the main event, the “Making a Difference / A Difference in Making” exhibition by Materialise at the Red Dot Design Museum in Essen, Germany. This exhibition, which includes my 3D printed bicycle, was first held at Bozar, the Center for Fine Arts in Brussles in 2015 but I wasn’t able to attend. So it was awesome to have a second chance to actually get to Europe for this exhibition and attend the opening event. For a 3D printing nerd, there was so much to see! Famous works like Iris Van Herpen’s Escapism dress, Patrick Jouin’s One_Shot stool and Bloom table lamp, The Adidas Futurecraft shoes… And that’s just a small part of the exhibition in these photos. If you can get there before the end of October I highly recommend it, there are so many inspiring examples of 3D printing. Big thanks to the Materialise team for their hard work getting this set up and including my work again, as an Industrial Designer having my work in the Red Dot Museum is certainly going to be a highlight of my career 🙂

Now that my head is full of fresh inspiration, time to head home and ramp up the work on my latest projects. Make sure you subscribe to my blog to keep up with the latest 3D printing experiments and behind the scenes insights.

– Posted by James Novak

InMoov First Twitches of Life

20160820_InMoov Arm Servo

The 6 servo’s needed to build the InMoov robotic arm/hand arrived since my previous InMoov post, and are now installed and working individually. All up they cost about $35AUD on Ebay. The Meshmixer hack for the stands I discussed in the last post also worked quite well, and luckily no other stands to mount the servo’s have needed re-printing – just a few spots of super glue to prevent any minor splitting between the printed layers. This means that most of the assembly of the arm and wrist is now complete, other than running all the lines to control the fingers (a big job I’m not looking forward to). Below is a video of the wrist movement using a MG 996 servo – sounds like it means business!


Nothing particularly exciting just yet, although it’s nice to see the InMoov showing the first signs of life (Frankenstein anyone?). As you can see I’ve connected this servo to an Arduino Uno, and am manually controlling the movements using Grasshopper and Firefly, both plugins for Rhino 3D CAD software. I’m not sure if any other InMoov makers have done this, but if you’ve followed my blog for a while you’ve probably seen previous demonstrations of how you can use what is essentially a 3D CAD program to control the Arduino in real-time, something I’m very excited about. I certainly aim to continue using this visual programming language (VPL) to interact with the arm, perhaps making it more intuitive and interactive to control. Next step: 3D printing the fingers.

– Posted by James Novak

Goodbye 3D Printing, Hello 4D Printing

Many people I talk to at events and workshops are only just catching on to this whole 3D printing thing, but did you know some of the exciting research in this field has already moved on to the next dimension – literally?

4D printing might sound a bit weird and wacky, but it basically just means something that has been 3D printed, but changes its shape afterwards since time is the fourth dimension. So a 3D print that changes over time. Skylar Tibbits from MIT is really one of the pioneers of such a concept, so if you want to wrap your head around the concept this link to his Self-Assembly Lab at MIT will have some more videos to explain what it means. Having spent some time lately writing about 4D printing for part of my PhD, I thought it was time to give it a go, taking inspiration from the Active Shoes created by the Self-Assembly Lab.

As you can see from my very rough video, it’s actually quite easy to do. All I did was create a few concentric circles in CAD with a 0.2mm thickness so that they would print only 1 layer thick on my Cocoon Create 3D printer. I then stretched some material (from an old pair of stockings – not mine I swear!) over the base plate and held it in place with clips. A slight adjustment to the height of the base plate to make room for this material and 1 minute later it was done.

20160628_4D Print

The result is really cool (I think) for something that only took 1 minute to print. It’s certainly not perfect, but shows a lot of opportunity for the future of fashion design. If you wanted to only use 3D printing to create this shape it would easily take 20 minutes or more on a standard FDM printer, so I think some more experimentation is required.

– Posted by James Novak