My First NFT Collection for 3D Printing

Welcome to my first post about NFT’s and 3D Printing!

If you’re new to NFTs like me, I hope you find this interesting with a few little tips and tricks along the way. If I can say one thing about NFTs (aka. Non-Fungible Tokens), it’s that they’re difficult to wrap your head around. Even just a few months ago, I was telling people I didn’t have any interest in making them or buying them. But here I am, dipping my toes in the water, and enjoying the learning process. For me, I found that just jumping in, committing some time and money, and making some NFTs was the best way to figure it all out. You may also need to jump into cryptocurrencies as well, but let’s not fall down this rabbit hole now!

As for explaining the whole concept of NFTs, I’ll leave that to The Verge or Investopedia to describe much better than I can. What’s important to know is that it is essentially a way to buy and sell digital information, which might be an artwork or animation, or even a 3D model. It’s also a way to verify who actually owns the information, even if other people are using it.

This obviously presents some opportunities for 3D printing files. If you wander around my blog, you’ll find dozens of free files that I’ve shared on websites like Thingiverse and Printables (formerly PrusaPrinters). These are normally shared with a Creative Commons license like CC BY-NC-SA 4.0, allowing anyone to download, 3D print, remix, copy and share the design, as long as they don’t try and sell it. I’ve even sold some files under different license terms. However, what can be much harder to document is who actually owns the design if thousands of people have downloaded it. For example, the designs I share online all link back to my profile, and it’s relatively clear who created the original. As long as someone doesn’t re-upload the file under their own profile, which is unfortunately a common problem! But what if you really love a particular design, and don’t just want to download a copy of it like everyone else but own the rights to it? Typically this would require some contracts between the designer (e.g. me) and the buyer to formalise, including payment and royalty conditions. This is where the NFT system can work nicely, as it is set up to be a digital contract that documents this, and supports the transfer of payments and royalties.

This is what I wanted to learn more about. So, I’ve created my first NFT collection for 3D printing, which is called BITSnATOMS – 3D Typeset for 3D Printing. As the name suggests, it’s a collection of 44 numbers, letters and symbols that people can collect to represent their name, initials, brand, etc. Through 3D printing, they can exist in the digital and physical worlds at the same time, which is a bit beyond what most NFTs offer. The GIFs below give you an idea of the voronoi geometry used for the typeface, but if you check out the link to the collection you’ll be able to actually interact with the 3D models.

The design itself combines several of the things I’ve shown in tutorials on this blog before, for example my video showing how to lightweight a bike brake lever. I might write another article later about how I actually created these, but the short version goes something like:

  • A basic 3D model was created in Solidworks and exported as a STL file.
  • This mesh was then rebuilt in Rhinoceros to have a more random and controlled collection of faces.
  • Next, it was imported into Meshmixer to create the voronoi lattice structure you see.
  • Lastly, and this part is important for NFTs on OpenSea, I used Microsoft Paint 3D to convert the STL file into a GLB file.

A GLB file is used for virtual reality, and OpenSea can directly embed this within its listing of your NFT, making it interactive so people can properly view your design. At the time of writing, there was no support for other 3D file formats that might be used for 3D printing, and there was also no GLB export method in any of my CAD packages. The good news is that GLB files open in Cura, making them directly 3D printable, or they can be opened up again in Paint 3D and converted back to STL files. There are also plenty of free online converters.

The actual process of listing NFTs gets a bit more complex (at least for a newbie). Thankfully OpenSea provides really great tutorials on getting set up with an account, as well as creating and listing your first NFT. I followed these to the letter, and had no issues, opting for a MetaMask wallet to hold my cryptocurrencies. Again, I could write a whole article about this part of the process, and may do so in future.

The rest of the NFT process is much like listing any item for sale online: Uploading the actual NFT (or information about how it can be accessed after purchase), a description, price, listing duration and you’re done. Multiple items can form what’s called a “collection,” although I found that the process of uploading each item individually was a bit painful, there is currently no batch upload process. Most of the things you hear about NFTs are actually collections, sometimes many thousands of items, rather than one-off items, and some of the items in these collections are worth hundreds-of-thousands of dollars each! For example, the Bored Ape Yacht Club is probably the most famous collection, with 10,000 artworks. The cheapest of these is currently selling for 111 ETH (which is worth $395,000 USD, or $527,000 AUD)! So multiply this by 10,000 and there is some serious money involved in this collection.

But this would be the exception, rather than the rule, for NFT success.

The challenge now seems to be all about marketing – there are so many millions of NFTs available that it’s extremely difficult to stand out, especially as a newbie who has neither bought nor sold an NFT before. So stay tuned as I figure out this part! For now, if you check out my collection and could share it on your social media, that would be a fantastic start.

I hope this was a useful intro to NFTs for 3D printing, please comment with any questions or ideas, or let me know what you’d like me to cover in the next blog article.

– Posted by James Novak

3D Printed Outdoor Lights in PETG

It’s official – my entire house now uses 3D printed light covers!

If you follow this blog you may have seen some of my previous indoor light covers, featuring a 3D scanned sea urchin shell and a pineapple. Of course, I couldn’t stop with indoor lights, especially since the outdoor wall-mounted lights on my house looked like the cheapest fittings available. They were desperately in need of an upgrade.

Luckily the fitting includes a piece that is easily unscrewed to accommodate standard DIY light covers. A few simple measurements, including the diameter of the fitting and distance of the protruding light bulb, meant that I had everything needed to create my own design in CAD. For this one I decided to use Fusion 360, just to keep my skills up as I’ve done a few projects in Solidworks recently. The only other limitation was the size of the Prusa MK3S+ build volume (250 x 210 x 210mm), as I wanted the light cover to be 3D printable in a single piece.

Putting all of this information in Fusion 360 gave me a starting point, and of course I began experimenting with a few simple ideas. The one that stuck was this collection of lofts that twist in different directions. Not overly complex, just a clean design that is easy to clean (a complex lattice would just invite spiders!) and protects the lightbulb from sun/rain. Because these are mounted quite high on the walls, what I really wanted was a cool effect when you are looking directly up at the light from below – see the top right image.

Something else I experimented with for the first time with this design was 3D printing using PETG filament – specifically, PETG from eSun. Why? Mainly because PETG has good UV stability so should last while out in the elements and sunshine. But what I’ve really enjoyed is how easy it is to print with – no warping, good adhesion to the build platform and no smelly fumes while printing. Happy days! I actually used the default PETG settings in PrusaSlicer and they seem to be dialled in nicely (no surprises really, thanks Prusa). The material also has a translucency, so the light shade has a bit of a glow when the light is on as you can see in the photos. If you’re looking for more details about the material properties and slicing settings for PETG, this article is a good starting point.

And of course, I’m giving this design away for FREE! Download from your favourite 3D file marketplace: Thingiverse, Pinshape, Cults, MyMiniFactory or PrusaPrinters.

Happy 3D printing.

– Posted by James Novak

3D Printed Toys with Moving Parts

My desk is covered with 3D prints, some of them my own designs, and others are just cool examples of what can be done with a home 3D printer. This is one of those examples.

Stian Ervik Wahlvaag (@agepbiz) has created a clever range of 3D printed vehicles known as “Tiny Surprise Eggs” – why? Well, because they fit within an egg of course! The unique feature of each toy (and egg) is that they feature moving parts printed in place, without the need for any support material. Once the toy is taken off the printer, it is ready to go. The example pictured above is “Surprise Egg #7 – Tiny Car Carrier” and all the vehicle wheels rotate, and the car carrier itself can raise and lower the ramps.

While I didn’t print the egg, I did scale these prints up 200% to have something a little bit more child-friendly. Unfortunately I enjoy them so much they have permanently stayed on my desk, but I promise I’ll print my son another set! The moving parts still work really well at this increased scale and provide some clever design tricks to ensure multiple parts can be printed as an assembly. As an example, above is a cross section through one of the cars showing how the wheels and axels are designed within the main body of the car. Some simple angled details mean that no support material is needed when printed in this orientation, yet from the outside the car just looks like it has normal cylindrical wheels. Great example of how to design for additive manufacturing (DfAM) as it’s known.

Following the vehicle carrier, I’ve also 3D printed “Surprise Egg # 6 – Tiny Jet Fighter” which features wings which fold out, again at 200% scale and with no support material. Both of these designs, as well as at least 8 more surprise egg vehicles, are free to download from Thingiverse, and highly recommended as a way to test your print settings (if there are any issues the moving parts may end up fused together), and learn a few of the tricks for designing assemblies for 3D printing.

If you print these yourself, or have any other recommended prints that include clever design details like moving parts, please share them in the comments section.

– Posted by James Novak

3D Printing in Sport – Hit or Hype?

If you’re into 3D printing, no doubt you are familiar with some of the ways it is being used in sports. Some of my own products (above) have included a 3D printed bicycle frame, smart bicycle helmet and surf fins, while in the media products have included shoes, golf clubs and shin pads.

However, as a researcher, I was interested to know how this translates into academic research. How many research studies have been looking at 3D printing for sports products? How much improvement does a 3D printed product offer over a conventional one? Which sports are adopting 3D printing? Working with my brother, Dr Andrew Novak, we hypothesized that given the amount of coverage in 3D printing media, there should be quite a large amount of research supporting the developments of iconic 3D printed sports products, as well as novel developments that haven’t even made it into the media yet. The results – published in a paper titled ‘Is additive manufacturing improving performance in Sports? A systematic review‘ – were surprising (preprint version freely available).

Up until May 2019, we found only 26 academic studies that provided any empirical evidence related to 3D printing for sports products. The graph above shows which sports, and how many articles have been published. The first of these appeared in 2010. Running/walking was the most popular sport with 10 articles (38%), followed by cycling with 4 articles (15%) and badminton with 3 articles (12%). All other sports – baseball, climbing, cricket, football (soccer), golf, hurling, in-line skating, rowing and surfing – had only been assessed in single studies. This means that a lot of research into 3D printing of sports products are just one-off projects, and indicates that there may be very little funding/interest to continue building larger projects.

It also suggests that any research being done to support mainstream commercial applications of 3D printing, for example for brands like Adidas and Specialized, is protected by intellectual property (IP) and not being published.

10 articles (38%) observed improvements in performance of products developed via 3D printing compared to conventionally manufactured products, 8 articles (31%) found a similar performance, and 5 articles (19%) found a lower performance.

From a technical perspective, powder bed fusion technologies were the most utilized with 50% of articles using either selective laser sintering (SLS) or selective laser melting (SLM), although 52% of articles did not name the 3D printer used and 36% did not name any software used to design or optimize products. 3D scanning technology was also utilized in 11 articles (42%).

So, is 3D printing in sport a hit or hype? Based on this research it is clear that within academia, 3D printing is still in the very early phases of consideration, and seems to be significantly behind industry. While you may be able to go and buy some 3D printed running shoes or insoles, or cycle on a 3D printed saddle, you won’t find any objective data in journal articles on these products or much research to suggest that 3D printed products are any better than conventionally manufacture products.

– Posted by James Novak

3D Printed Mounting Brackets

Brackets are pretty boring, I know, but being able to 3D print exactly what you need, for just a few cents, just makes good sense (see what I did there?).

I wanted to mount a LED strip underneath my kitchen bench top, but also wanted it to run off batteries so I didn’t have chunky cords to plug in for power. The set that I ended up buying had a battery pack which needed to be mounted along with the strip, as well as a remote. One option would be to use double sided tape, however, this would make accessing and changing the batteries painful. So, a simple bracket was needed. While doing this, I also decided to mount the remote so it wouldn’t get lost.

Like many of the projects on this blog, the entire process from CAD to finished 3D printed parts only took a few hours. Solidworks was used for the CAD modelling, while the brackets were printed on a Wanhao Duplicator i3 Plus in PLA. A couple of screws up into the bench top and job done. Secure and out of the way, but easy to remove the remote and battery pack when needed.

If you’re interested in more quick projects like this, check out my special friction hooks or hex business card holder tiles.

– Posted by James Novak

3D Printed Pineapple Light

3D printing light covers and lamps are always fun projects, you can’t really go wrong.

Continuing from a previous post where I outlined the process of designing sea urchin light covers for my house, I’ve still been wanting to design another light cover to mix things up so each room isn’t the same. Enter the pineapple light! 🍍

Unlike the previous process of designing the sea urchin light from scratch using a 3D scan, this time I was able to find something on Thingiverse that was almost perfect – this model of a pineapple. The bottom part had a really nice geometric pattern that saved me hours of mucking around in CAD and designing the same thing from scratch. This is one of the things I love about the 3D printing community – the open sharing of 3D models to be remixed (also known as a mashup) just like a song or video into something new and creative. You can read more about remixing in one of my previous tutorials.

Similar to the sea urchin light, all the pineapple needed was to be scaled to the right size, hollowed, given a thickness, and have a neck piece added to connect with the light fitting. This neck piece was directly imported from my previous project in Meshmixer (free CAD software), and both pieces were joined together. Nice and easy!

Just like the sea urchin light, these pineapples were 3D printed on a Prusa i3 MK3S in a natural PLA from eSun – it’s a translucent material which I found from previous experiments to work really well for light covers when given a very light dusting of white spray paint. The painted exterior still allows the light to shine through nicely, but just helps define the form better than the natural finish on its own. If you want to see exactly how this compares to the natural filament on its own, or a pure white PLA, check out my sea urchin light post. This design can also be 3D printed without any support material.

Best of all, you can download my pineapple light cover completely free from Thingiverse, Pinshape, Cults and MyMiniFactory! Just like the original design of the pineapple which helped me in this project, I hope this remix will help you in your own project – even if you don’t have the same size light fitting as me, with a bit of editing in Meshmixer or another CAD program, you can easily modify this design to suit your own needs. Enjoy.

– Posted by James Novak

Meshmixer Tutorial: Brake Lever Lattice

Recently I was asked to put together a Meshmixer tutorial for students studying additive manufacturing at Deakin University. The result: a 20min demo project to show you how to turn a pretty standard brake lever into something really cool for 3D printing. If you scroll through the tutorial section of this blog you will find many other demos of how to use Meshmixer, it really is one of my regular go-to tools.

Even if you’re not interested in the brake lever, through the tutorial you will learn to divide a single part into multiple segments, modify mesh quality, convert a part into a lattice structure, and join multiple parts together into a single part ready for 3D printing. You can apply any of these tools to your own project.

Enjoy.

– Posted by James Novak

Customising Surf Fins for 3D Printing

Early followers of this blog may be familiar with several projects to 3D print kiteboard and stand up paddle (SUP) board fins, including some fins you can freely download if you’re into kitesurfing. It’s been a little while between posts on this topic, however, I have been busy in the background producing a system to help people with no CAD experience design and customise their own fins ready for 3D printing. The full details have just been published in the Computer-Aided Design and Applications Journal.

Quite a few people have used 3D printing to produce surf fins – after all, it’s very cheap and means you can produce just about any geometry you like. Researchers have looked at the strength of different materials and 3D printing technologies for this application, as well as the performance (fluid dynamics) of different geometries. However, if you are not a relatively advanced CAD user, it is unlikely you will be able to design the fin of your dreams, no matter how awesome the research suggests 3D printing can be! This is what I was interested in solving.

Using Rhinoceros and Grasshopper, the complexity of a fin was condensed down to a series of limited controls that allowed for freeform experimentation. The above image is the interface that allows surfers to customise a fin design in real-time. It is based on a handful of common fin properties such as the fin system, fin position on the board, cant, fin depth, sweep, base length, base foil profile, tip sharpness and tip thickness, all of which can be modified using some simple sliders or dropdown menus. Feedback is also provided in the form of overall dimensions and volume. From the image at the top of the page, you can get a sense for the wide variation in designs possible from this simple interface.

Once you’re happy with the design it can be exported ready for 3D printing. I’ve 3D printed a couple of different designs for testing on my SUP board, the smaller white fin in the image above being 3D printed using FDM, while the larger fin was 3D printed using selective laser sintering (SLS). Both worked well in flat water paddling, although I’m sure some carbon fibre would give me a bit more confidence heading into the surf.

Hopefully some more to come soon as spring and summer approach.

– Posted by James Novak

3D Printed Face Shields vs. Masks

As the graphic above shows, 3D printing a face shield is twice as fast as 3D printing a face mask. How do I know?

In my latest journal article called A quantitative analysis of 3D printed face shields and masks during COVID-19, I documented 37 face shields and 31 face masks suitable for fused filament fabrication (FFF, or FDM). The graphic provides the average data for all the different designs, including a range of qualities including the amount of filament required, number of 3D printed parts, total volume of all parts, and the dimensions of the largest part for each design (so you know if it will fit within your 3D printer’s build volume). If you’re interested in all of the specific details for each of the individual designs, all of the data is free to access here. You might also want to start with my first article analysing 91 3D printing projects at the start of the pandemic.

Why is this important? Well, if you look at the graph above, you can see that the print time and amount of filament for each individual design varies significantly. For face shields, the shortest print time was 46mins to produce a single part with 12g of material for the Version 1 face shield from MSD Robotics Lab. The longest print time for a face shield was 4h 34min (274min) and required 63g of filament, also only a single part from MITRE Corporation. This means that for each MITRE Corporation face shield you could 3D print almost 6 MSD Robotics Lab face shields. This is a big difference if you’re trying to maximise the quantity you produce for your local hospital or health centre. Below you can visually see how different they are, and why there is such a difference in print time and filament use.

Print times vary even more for face masks, with the shortest print time being 2h 14min (134mins) requiring 32g of filament for a 3-part design from Collective Shield (v.0.354). This design is 3D printed in a flat form only 0.6mm thick and then folded into a 3D face mask, often referred to as a “2.5D print.” In contrast, the longest print time for a face mask was 10h 32mins (632mins) with 130g of filament required to print 26 separate parts, forming a respirator style mask called Respirator V2 from Maker Mask. Both of these different designs can be seen below.

Assuming a price for PETG filament of $30/Kg, the cost of 3D printed components for face shields can be calculated to range from $0.33–1.95, while the range of face masks was $0.96–3.90. For one-off products these differences may not be critical to makers, yet when multiplied by hundreds of thousands or even millions (e.g. the IC3D Budmen face shield has been 3D printed over 3 million times!), the potential investment by makers, organisations, charities and businesses may vary significantly based on the selection of one design over another, or one version of a design over another.

If you want to find more of the data and read the detailed analysis, please read the full article here. I look forward to continuing to bring you new analysis of 3D printing during COVID-19.

– Posted by James Novak

3D Printed Oahu, Hawaii

Sometimes you see a design online and just have to 3D print it!

This is an amazing 3D topographic map of the Hawaiian island Oahu, and for anyone that’s been there you should be able to make out the airport, Pearl Harbour and Waikiki areas. Thanks to Eric Pavey who created this model and detailed the process of using a tool called Terrain2STL on his blog. It’s also available on Thingiverse. The detail is amazing!

For something a bit different, I wanted to do a two-tone print to separate the water and land. Using the Pause at Height feature in Cura, I was able to swap out filament after the first handful of layers, going from eSun white PLA, to eSun bamboo filament. I must admit, the pause feature didn’t quite work how I’d like it to on my Wanhao Duplicator i3 Plus, not actually pausing the print and allowing me to resume it again when I was ready, but I was able to time my prints and catch the feature in time to quickly do a swap during the 30 seconds or so that the Pause at Height feature ran. All it did was move the extruder to the home position and extruded a bunch of material, and then resumed automatically. I might need to create some better G-code for this next time.

However, I’m very pleased with the effect, especially when you move a light around the model!

– Posted by James Novak