Return of the Beer Bottle Lock

20170823 Beer Lock Blank

It’s been quite a few years since I first posted this design on my blog – check out where it all began here. One of the great things about sharing designs like this on file sharing websites like Thingiverse or Pinshape is that you get to see when someone enjoys your design and shares their own photos of the print, or even better, remixes it to add their own unique twist to the idea. Someone even made a video on Youtube which featured this lock 🙂

Occasionally I get requests, either on these websites, through social media, or on this blog, for me to make alterations to a design, or share the native design files for someone to more easily modify. 9 times out of 10 I’m more than happy to help. A few days ago I was contacted through Twitter to make a simple variation to my Beer Bottle Lock, removing the text on top that says “hands off my beer” to provide a blank surface for someone to more easily add their own custom text.

Given that the file is parametric in Solidworks, the alteration only took a few seconds. However rather than email the files direct, it seemed like a good opportunity to share a remix of my own design on Thingiverse, and hopefully benefit even more people. So you can now download this design for free by clicking here, just like the original.

This got me thinking about remixes, and the fact that many of my favourite 3D printing sites like Pinshape and Cults don’t really allow for remixes to be clearly linked to the original source file. I can either upload a print of a design (just photos, not a new STL file), or upload a completely new design. If I want to let people know this new design is a remix, I have to manually write this in the project description, and supply a URL to the original file as you can see on my upload of this new blank version beer bottle lock on Pinshape. On Thingiverse, you can specifically say your design is a remix of another with the click of a button, and a link is created so others can easily go to the original, and see all remixes to find the one most appropriate for them. This is a better system that ties in with the whole Creative Commons (CC) licencing used by all of these websites.

I hope some of these other file sharing websites will take up the challenge to make file attribution and remixing more transparent, it shouldn’t be left up to the user to understand the licensing options and manually enter this information. A common standard across a website, as done by Thingiverse, would really help encourage more sharing, and appropriate attribution to designers.

– Posted by James Novak

3D Printed “Marshmallow Challenge”

collage

Have you ever done the Marshmallow Challenge? Chances are you’ve done something similar at school, or if you’ve ever been to a team building workshop it’s a pretty popular creative exercise. Basically teams must build the tallest freestanding structure they can in 18 minutes using 20 sticks of spaghetti, a yard of tape, a yard of string and 1 marshmallow on top. Tom Wujec has been running these challenges for many years and presented a great TED talk if you want to find out more about the challenge and what can be learned from it.

Well now I’ve put my 3D printing twist onto the challenge, running what turned into a very competitive series of workshops for the Intro to 3D Printing course at my university. Teams were given a selection of materials we had readily available for model making (20 paddlepop sticks, 1 paper plate, 2 paper cups, a few drinking straws, a length of masking tape and a length of string) and given a very simple brief – build the tallest freestanding structure possible during the 2 hour workshop. The catch:

Teams were each given an UP Plus 2 3D printer and laptop with Solidworks, and could print as much as they wanted to help build the structure.

Now that makes things interesting! These are first year students only new to CAD and 3D printing, so what can they both design and print in such a limited time? Do you print lots of small things, or 1 big thing? How can you tweak the 3D print settings to get things printed as quickly as possible? What do you do when your print doesn’t work? It turns out that this challenge can teach you a lot about 3D printing, and how to rapidly test, prototype and build without wasting any time like in the normal 6 week projects.

As you can see from the photos, the results are very impressive! The winning team built a structure up to 249cm, which basically meant they used all the materials end-to-end and could not go much higher even if they had more time. This team 3D printed small little rectangular connectors for the paddlepop sticks, and with a lot of delicate balancing, managed to get their structure stable at the very last second. Much much higher than I expected when I set this challenge! They were in a very close battle with the team that came second for the day, reaching 238cm with a slightly different connection method where they used 3D printing to connect the paddlepop sticks to the cups. What you might notice with the top 3 teams is that 3D printing was used for small connecting elements that could be quickly printed, whereas some of the other teams (eg. 4th place who I only have a photo of part of the structure) were 3D printing much larger bases and simply ran out of time to push their structures quite as high.

All of the students were very involved and motivated by this task, it’s something I will run again in future classes and 3D printing workshops as a way to push the limits of the 3D printers and break them out of being so precious about what comes off the printers. It also gets them thinking about how to combine 3D printing with other methods of prototyping, you don’t necessarily need to 3D print every part of your design as it’s quite a slow process, particularly for FDM machines. Feel free to make your own twists on this challenge in the classroom, and I’d love to see your results! Maybe the 3D Printed Marshmallow Challenge will be the next big thing?

– Posted by James Novak

Design a 3D Printed Snap-Fit Enclosure

20160623_Pine64 Enclosure

Today I’m pleased to share a tutorial that I’ve written for my new friends at Formlabs called “How to Design 3D Printed Snap Fit Enclosures.” Follow the link to read all the details, but in short, this tutorial will guide you through some of the important steps to designing your own custom enclosure suitable for 3D printing, and featuring a snap-fit detail so that you can easily open and close the enclosure without needing any tools. The tutorial is done using Solidworks, however you should be able to follow along no matter which 3D CAD software you use, even the free ones like 123D Design – the process and tips are exactly the same.

For this tutorial I used a PINE64, the famous $15 64bit computer funded on Kickstarter in 2015. The enclosure is designed to offer something unique and exciting to complement the computer, and of course take advantage of 3D printing. You can access all of the ports and features with the enclosure fitted, and there’s a great spot on top to store SD cards, USB sticks etc.

By the way, if you just want the enclosure without following the tutorial, of course I’ve uploaded the design to Pinshape, Thingiverse and Cults so you can download it and print it for yourself!

– Posted by James Novak

June Events

20160617_3D Workshop School

It’s been a busy month for me and 3D printing even though it’s meant to be the mid year break from uni! Above are some photos from a full day 3D printing workshop I ran for a local high school in our new 3D printing lab, with a handful of students all being exposed to CAD, 3D printing and 3D scanning for the first time. By the end of the first session each of them had their first small design 3D printing over the lunch break, which just shows how quickly young kids are able to pick up this technology. We were also able to demonstrate for the very first time one of our brand new chocolate 3D printers, the Choc Edge. Yes that’s right, a chocolate 3D printer! I’m sure it won’t be long before everyone has something like this on their kitchen bench, but for now if you want to see how they work, come along to our Gold Coast campus open day on July 24th where we will have 3 in action for your sugary delight!

20160621 Innovation Brisbane

Last night I was really privileged to be a speaker at an event called DRIVEinnovation, hosted by the Brisbane West Chamber of Commerce. As the name suggests, the discussion was all around innovation, and how businesses can better adopt new technologies and keep up with the rapid changes across all industries. I was part of a panel with Ty Curtis from local augmented reality company Activate Entertainment, and Sam Forbes from cloud services company 6YS. The questions were certainly challenging in the short time-frame (how do you even begin to describe how to innovate in just a few short minutes?), but it’s really great to see such an active council asking these questions and building a community of very talented people. There were even some virtual reality and augmented reality demonstrations (that’s me in the right photo looking at a human skeleton with augmented reality). If you’re in the local area, it’s definitely worth following the Chamber through email or social media as these events happen every few months.

Coming up next week, and running over 2 weeks, are some intensive workshops at Griffith University for teachers. The workshops run in 2-day blocks, costing $180 (which also allows you to bring a student for free), and are on the following topics:

  • InDesign (beginner and advanced)
  • Photoshop (beginner and advanced)
  • 3D Animation (beginner and advanced)
  • Games Design (beginner and advanced)
  • Hand Lettering
  • 3D Design
  • 3D Printing (beginner and advanced)
  • Design Modeling Techniques

I will of course be running the 3D printing workshops, and there will be 2 levels of workshops each week: Workshop 1 is for beginners to CAD and 3D printing, where people will get to build a functioning product assembly. Workshop 2 is for more intermediate users who have some experience with CAD and 3D printing, and we will be combining this knowledge with 3D scanning to create wearable devices. If you’re interested, get in touch and I’ll pass on details to the administrator organising the event.

– Posted by James Novak

A 3D Printed Furry Bear (and a cat or 2)

20160505_3D Print Bear Cats

This is a real blast from the past – the bear pictured in the photos is actually from a Solidworks model that I created back in 2012, long before I had my own 3D printers. Today I dug it up and decided to breathe some life into the little guy using my Cocoon Create 3D printer – sometimes I almost feel like Frankenstein!

By complete accident, he’s printed out with a bit of fur down one side! This is just where a small support structure which was building to support his ear broke off (the support really wasn’t needed anyway), and therefore the small amount of plastic which was then extruding into thin air became joined when the nozzle went to the main model. But a pretty cool effect that I’m not going to clean off. I remember reading about some researchers who had perfected 3D printing hair, I wonder if this sort of happy accident inspired them?

 

The other 3D print is a simple download from Thingiverse of the Cuddling Cats by PixelMatter3D, just a fun little print when you want to give someone a gift. If you’ve followed my blog over the last year, you’ll probably notice it’s not the first time I’ve 3D printed a cat – check out this other Thingiverse cat I printed which can make a really cool lamp.

– Posted by James Novak

3D Printed Enclosures Are So Rewarding

20160423_3D Print Enclosure

OK so some people might look at this and think it’s just a box, but when you stop and think that 2 hours ago this “box” had never before existed in the entire span of human history, and that it was made on my desk, with a printer, well that’s pretty cool!

That might be over-dramatising things just a little, but there really is something very rewarding about 3D printing a custom enclosure to contain your electronics. I have quite the collection now, for example an Arduino enclosure and a Wiiduino. In this particular case a custom PCB has been manufactured, and we need to contain it in something for trials, keeping all the wires and mess tidy and giving the appearance of a real wearable product as it one day could be.

20160423_3D Print PCB Case

The PCB is about the size of an Arduino Uno, with a lithium battery that needs to be housed inside as well. I started by modelling the PCB in Solidworks, just as I have done in previous projects. While many people would only bother creating a simple block model of the overall dimensions, I’ve gone to the trouble of accurately modelling all of the key components like LED’s, buttons and connectors as shown above. This means that in the enclosure design, I’ve been able to play with form, giving the design tapered edges to make it seem slimmer, and accurately place holes and details for the various components. In doing so, the first 3D prints fitted successfully, saving time stuffing around later. These were printed on my Cocoon Create, which is still going along nicely, thanks Aldi!

I’ve also opted to use 2 screws to secure the enclosure halves, as snap details on such small enclosures can be fiddly when using desktop 3D printers – if you don’t print them in the right orientation, they just snap off. With holes already placed on the PCB, it makes sense to use these to both secure the 2 shells, and hold the PCB in place. So you get the full picture, here’s the 3D model for you to spin around.

Lastly my tip is to always add some sort of logo or name to the enclosure – it just makes it really pop, and takes no time at all to add. Even a rough prototype should look good!

– Posted by James Novak

 

WTF, a low-poly goat?

20160322_3D Print Trophy

Yes, a low-poly goat. A few in fact.

These are 2 trophies that I’ve 3D printed for my second year class at Griffith University as awards for their current project designing lights for Yellow Goat. Nothing beats getting the students to work on real projects with industry, and adding an extra incentive with these trophies adds an extra competitive level and of course bragging rights for the winners! If you look back to one of the largest 3D printing projects I’ve tacked using desktop machines, the Mario Kart Trophy, you’ll see it’s not the first time I’ve used 3D printing to create a custom trophy. It’s turning out to be a great application of 3D printing since you can get really creative and produce them very cheaply (I wonder if trophy manufacturers are using 3D printing?). On the left is the trophy for the best design as picked by the team from Yellow Goat, and the trophy on the right is for the best team leader, chosen by averaging the marks of all team members and finding which team overall has the highest marks.

20160323_Rhino Low Poly

The 3D CAD modelling of this design was not as straight forward as most of the other designs on my website, so here is my workflow in case you’d like to try something similar (you don’t need the same software, just to understand the process):

  1. Trace the outline of the Yellow Goat logo (shown above right) in Adobe Illustrator. Export as a .dxf file, providing accurate 2D line-work to use in the 3D CAD model (you could just bring the image directly into your CAD software if you prefer).
  2. Import the .dxf file into Solidworks. Use this line-work to base your 3D modeling off. I also created some guide lines to ensure that my model would fit onto my desktop 3D printer without needing to scale later.
  3. Export the final model from Solidworks as a .IGS file.
  4. Import the .IGS file into Rhino. The model in the image above on the left is the imported model from Solidworks (yes you could just model the design in Rhino to begin with, however I knew I could get to this point much faster in Solidworks).
  5. Use the “Reduce Mesh” tool in Rhino to reduce the number of faces of the mesh. I reduced mine by about 93%, resulting in the low-poly model shown above. It’s also possible to do this type of low-poly conversion using the free software MeshLab, just click here to read one of my previous posts about how to do this.
  6. Because 93% is a huge reduction, the resulting mesh did have some gaps where the software didn’t know what to do, so was not watertight (manifold) and ready to 3D print. I manually cleaned up some of the edges and added some surfaces to fix this issue.
  7. Export as .stl and 3D print!

20160321_Yellow Goat

As you can see I still ended up splitting the large goat piece in order to minimise support material, printing the body piece upside down with the legs in the air and gluing the head back on later. It took a few prints to get the smaller goat right, the middle image above showing some of the messy surfaces I was getting from the Up! Plus 2 printer I used, surprising since it’s normally very good. The ABS seemed a little more sticky than normal as well, meaning the support material didn’t just peel away but had to be scraped and cut, making more of a mess. But third time lucky! I also downloaded the human figure from Thingiverse to again save some time, and it gives the effect I wanted anyway. A bit of chrome spray paint, a chipboard base and voila!

Check out the 3D model above for the full effect of the low-poly design!

– Posted by James Novak

Mesostructure

20160225_Mesostructure

Mesostructure… Is that a real word?

It sure is, and while the definitions are quite complex, the best way to understand a mesostructure is to look at some images of them. The top left photo is actually a nice 3D print of one you can download free from Thingiverse, and if you’re after something to show people the interesting things that can be 3D printed, this is a great example. I’ve printed them in ABS plastic, but the structure itself is both rigid and flexible. 3D modeling them can be a good little challenge – hopefully whatever CAD program you’re using has some great patterning and mirroring tools! I used Solidworks and really made the most of the parametric functions to allow quick and easy changes in the future. By changing the density of the structure, or simply increasing the thickness of them, you can really play around with the flexibility of the structure.

The other 2 images are actually my first little attempt and having a functional use for a mesostructure. I’m trying to isolate some small vibration motors, and this was one of the ideas building upon a previous round of prototypes that I’ve posted. It’s just like building in some springs between each motor. Nice and flexible and only 25 minutes to 3D print on my Cocoon Create, which is great when you’re trying to test and iterate multiple ideas quickly. Below is the 3D model for you to spin around.

– Posted by James Novak