3D Printed Medal and Trophy

IMG_20181024 3D Printed Trophy Medal

As a product designer focused on 3D printing in my job at the University of Technology Sydney, it was no surprise that I found myself being asked to design some 3D printed awards for the end of year 2018 Vice-Chancellor’s Awards for Research Excellence. And while not receiving an award (yet!), I think it’s even more fun to get to be designing them – besides, now I can print them out for myself!

I was asked to design 2 different awards which you can see pictured above. The first were a set of 3 medals, and my only brief was to have them 3D printed in metal, and for them be approximately the size of previous medals given out for the awards. I based my design on a spinner concept which I’ve previously printed, with an important feature being the cone-like details which hold this assembly together when printed as a single part. There is no support material required, with one of my goals being to highlight through the design the capabilities of 3D printing in metal. For recipients, my goal was to create something playful and engaging, rather than most medals which are kept in a case and quickly forgotten. Thanks to my friend Olaf Diegel at Lund University for printing these in aluminium and sending them to us in time!

VID_20181023_095036 GIF

For those familiar with metal 3D printing (Direct Metal Laser Sintering to be specific), you can probably guess there was a lot of manual post-processing of these medals to remove the base supports and polish the surfaces. Below you can see the medal as it comes out of the printer on the left (once cut from the build plate), and the final polished version on the right. All of the base support material you can see in the raw version had to be filed away while held in a vice, before going through a lengthy process of polishing. Slow, painful work, but you haven’t truly 3D printed in metal until you’ve gone through this process, it makes peeling away plastic support material from FDM prints seem like child’s play!

cof

The second award was a trophy which also continued with the 3D printed assembly concept. My only brief for this design was for it to be printed on our own HP Multi Jet Fusion 3D printer, which is very similar to SLS printing. Many of us have seen the “ball in a ball in a ball” type of prints which are often shown at 3D printing expos and events, and I built off this to incorporate a lattice frame to contain the balls. The basic design was done in Solidworks, however, the balls were just solid spheres at this stage. I then exported them into Meshmixer in order to apply a lattice structure to them, using 2 different geometries. All parts were then imported into Meshmixer in order to export them as a final fully assembled file ready for printing.

VID_20181024_134222 GIF

A little bit of laser cutting and timber work by a colleague really helped bring the design to life, and again, the trophy encourages interaction and play. Congratulations to the winners and finalists, I hope you enjoy your awards as much as I did creating them. With any luck I might get to design them again in 2 years and bring one home myself for real! 😉

– Posted by James Novak

Advertisements

First 3D Print with the Wanhao Duplicator D9/500

IMG_20180917_Webcam 3D Print Mount

If you have followed my blog for any length of time, you’ve probably noticed I’m quite a big fan of the Wanhao 3D printers – they’re cheap, reliable, upgradable, and just good value for money. Even my Cocoon Create from Aldi is actually just a Wanhao in disguise! Recently Wanhao released the Duplicator D9/500, which has an incredible 500x500x500mm build volume. Yes, you read that right, those numbers are not a typo! The picture above doesn’t do it justice, this is a big unit that currently we can only store and run on the floor until we can free up a large desk. Manoeuvring this thing is definitely a 2 person job!

Before I get into the details of the machine and my first experiences, the printed vase pictured above is the first successful print, which is the Curved Honeycomb Vase (free on Thingiverse) printed at 200% scale. Printed in vase mode (aka “spiralise” in Cura) with a 0.8mm nozzle, this print took approximately 6 hours to complete. A great design in itself, and very cool at this large size.

However, it certainly hasn’t all been smooth sailing with this printer. First, there were some lengthy delays from Wanhao between when we placed the order and finally received the machine – apparently some manufacturing and quality control issues, and Wanhao may have released the machine a bit too early to market. In total we waited several months, however, they may be much faster now that issues seem to be resolved. The second big issue we faced was assembly – the supplied instructions weren’t particularly useful or even relevant, with some of the components no longer supplied with the printer – it seems that the initial release included large brackets to help stabilise the frame and some other details in the instructions, so we were left feeling like we were missing some parts. Apparently we are not, although we still haven’t figured out some of the cable management issues and have had to hack together a temporary solution for now.

Another challenge with assembly was in constructing the frame; obviously at such a large size the frame wasn’t pre-assembled like the smaller Duplicator 3, and the frame also uses extruded aluminium rather than folded sheet metal. Squaring all of these extrusions is not simple, and some initial issues when running the machine were related to having one of the vertical frame pieces lightly twisted. Some better alignment details are definitely needed.

The final issue that we’ve been experiencing is in the auto-levelling sensor, which was not installed at the correct height in the factory and required a lot of manual adjustment (we had the nozzle collide with the bed several times when first running it). However, even with this, the machine doesn’t really seem to adjust the prints for any levelling issues; our first prints across the bed revealed a number of areas where the bed was slightly warped, which were not being corrected by the auto-level feature, so we are currently manually doing adjustments for now. And we have found the central area of the bed is OK, so the vase printed really well.

So overall I would have to recommend that anyone considering this printer hold off for at least a few more months, there are just too many issues for anyone without a lot of experience calibrating 3D printers, and without the time to really get in and troubleshoot issues. Last time I searched on YouTube it seems others have also come to a similar conclusion. I think with time this will be a great 3D printer, we’re certainly going to keep learning more about it, but this seems like a case of a manufacturer rushing to market without properly testing and perfecting their equipment. Unfortunately, an all too common story in the 3D printing world.

Make sure you follow my blog and social media accounts to keep up to date with ongoing test prints and posts about the Wanhao Duplicator D9/500. And please share your own experiences in the comments section so we can all learn from each other 🙂

– Posted by James Novak

3D Printed Webcam Mount

IMG_20180917_Webcam 3D Print Mount

Whenever I travel I always have a small Guerrilla tripod to easily mount my cameras just about anywhere – the flexible arms make it perfect for wrapping around handrails or quickly levelling on uneven surfaces. Which made it my first choice when it came to mounting an old webcam so I can begin streaming my 3D prints to Youtube!

I’m seeing a lot of people like @wildrosebuilds posting awesome time-lapse videos of their 3D prints, and plenty of tutorials online showing how to build quite elaborate rigs to do so. I don’t really have time to deal with all of the video editing for each print, but the opportunity to live-stream prints directly to Youtube seems like a great way to share what I’m working on in real-time, and also allow me to monitor prints without having to physically be with the printer. However, webcams aren’t designed to mount to the typical screw mechanism used by tripods/cameras, so I had to design my own bracket to allow me to mount an old Logitech C270 HD webcam to the tripod.

The top right image shows the small slide-in clip that screws to the underside of a camera, and locks into the tripod. My first step was to reverse engineer this part with a set of calipers, modelling the geometry in Solidworks. I then added a vertical element to attach to the webcam, which has a hole on the back normally used by a bracket attaching the webcam to a computer screen. An extra lip on the front to hold the webcam in a vertical orientation, and voilà!

The blue bracket has been printed on my Wanhao Duplicator i3 Plus in PLA, and a screw I had lying around holds the webcam to the bracket. A nice little solution that should see some action very soon. Subscribe to my Youtube channel or follow me on Twitter to be alerted when I begin streaming prints, I know it can be a bit like grass growing but watching 3D prints is still addictive to me. If you’d like to download this design for yourself, you can find it on Thingiverse, Pinshape and Cults – feel free to make your own modifications as needed and share, I know the C270 is quite a popular webcam.

– Posted by James Novak

UPDATE: If you want to see my first live-stream using this webcam mount, here it is:

Check out my channel to see more, and subscribe to be alerted when I go live.

Ninjaflex Part 3 – Flexion Extruder Upgrade

20180515_Flexion Wanhao

This is the third post in a series about 3D printing with Ninjaflex, which initially began using the stock standard extruder on a Wanhao Duplicator i3 (click here to start at the beginning), before a 3D printed modification was trialled (click here for post 2), and now here we are with a completely upgraded extruder specifically for printing with soft materials.

Pictured above you can see some fancy red anodised components and exposed gears – this is the Flexion HT Extruder, a relatively expensive upgrade (US$179) which is about half the cost of the entire printer itself. It replaces the entire core of a standard single extruder; all that remains from the original is the stepper motor and cooling fans. So why upgrade?

Well as the previous posts discovered, the highly flexible nature of Ninjaflex (shore hardness of 85A) meant that it was difficult for the standard extruder to force down through the hotend and out the nozzle. Imagine taking a length of soft liquorice and trying to push it through a hole that is smaller than the liquorice diameter! As a result, after a few minutes of printing, it was common for the filament to begin looping out the back of the extruder. The Flexion extruder has much tighter tolerances around the filament the entire length it travels, so there is nowhere for the filament to go except down. Also, it has adjustable pressure using the round dial you can see with the knurled detail in the photo above – this means you can apply more force on the soft filament to maintain a strong grip against the stepper motor gear. By rotating the dial, you can quickly scale the pressure back when you change to a rigid filament like PLA, with 4 levels of variation possible and a grub screw to really dial in each setting. The design is completely open, (when it was assembled I initially thought something was missing!), which means you can see the filament and gears, which is great for maintenance and adjustment. And while I haven’t tried yet, according to the Flexion website the nozzle can handle higher temperatures than a standard extruder, up to 290°C, which is great for plastics like nylon and polycarbonate.

The photo at the top right is one of the first 3D prints done to test the abilities of the extruder, taking approximately 4 hours. It looks good from a distance, although there are some small gaps where we started with too much retraction and not enough flow – at this point we are still experimenting with settings to get the best results, currently trying 107% flow, 40mm/s print speed and 1mm retraction. If you are using a Flexion for Ninjaflex and have some reliable settings, I’d love you to post a comment and share them!

– Posted by James Novak

3D Printed Assemblies

20180420_3D Print Moving Assembly

One of the most interesting features of 3D printing is that it’s possible to print multiple parts in their assembled state, reducing the need to bring together a whole range of different pieces and assemble them using screws, snaps, glue etc. While this is normally easier using the Selective Laser Sintering (SLS) process, with a bit of experience and some clever design skills, it’s possible to 3D print moving assemblies on a basic desktop FDM machine.

Pictured above are 2 objects I’ve been wanting to 3D print for a long time as great examples of what can be done with an FDM machine. The first is called an Air Spinner and is free to download from Thingiverse. Due to the tolerances and angles between each part, no support material is needed, and you can literally start spinning each of the pieces straight off the printer, functioning like a gyroscope. A nice quick print, and a great demo piece. Below is a video I found of someone printing and spinning one so you can get the full effect.

The second print pictured to the right is a Planetary Gear Keychain, also free to download from Thingiverse. This one is much more of a test of your printer’s settings, the first time I printed it all of the pieces were completely fused together and impossible to free. Even this print required a knife to separate pieces that formed part of the first layer, with the squished plastic bonding them together as my nozzle was slightly too close to the print plate. This one is remixed from another design on Thingiverse which I recommend you check out for all the instructions to help get the best result, and read how other people achieved successful prints. Here’s a short video to see the planetary gears in action

If you’re looking for some fun prints to share with people, these 2 are very much recommended and relatively quick, although I’m still a very big fan of the Kobayashi fidget cube from one of my previous posts whichis another great assembled object. If you’ve got a favourite 3D printable assembly, leave me a comment/link below and I might add it to my list of things to make!

– Posted by James Novak

Ninjaflex Extruder Mod – Fail

20180409_Ninjaflex Mod

This is a short little update following on from my last post attempting to 3D print with Ninjaflex filament (soft TPU):

After limited success using the stock extruder on a Wanhao Duplicator i3, I found a 3D printable Extruder Drive Block on Thingiverse to supposedly help stop the filament from finding its way out out the back rather than being forced down into the nozzle. Well, as you can see from the photos, it looks like it fits quite well, although I did have to slice and file a few areas to fit properly – most notably around the shaft of the stepper motor which was far too tight and stopped it from turning, and the wheel that pushes the filament against the stepper gear which was blocked from putting any force against the filament so did not drive it down into the nozzle. Admittedly, the file on Thingiverse was designed for the Duplicator 4, so it was a bit of a long shot to work with the i3.

So back to the drawing board I’m afraid for Ninjaflex printing – perhaps time to upgrade to a Flexion extruder, or look at some other TPU materials that might be slightly stiffer and more suitable for this basic extruder. Flexible PLA looks interesting. If you’ve had any successes 3D printing with Ninjaflex on a printer like the Duplicator i3, leave me a comment 🙂

– Posted by James Novak

3D Printed Ninjaflex – First Test

20180406_Ninjaflex Wanhao

I’m sure if you’ve been 3D printing for even a short time, you’ve heard of Ninjaflex – a brand of flexible filament for your FDM printer that has rubber-like properties, rather than the usual rigid plastic parts that are more common with ABS or PLA filaments. While I’ve known about them for many years, I’ve never risked clogging my printer after hearing some bad experiences with these softer materials. Until this week!

I’m currently working with fashion postdoctoral researcher Mark Liu, who purchased a Wanhao Duplicator i3 v2.1 for some of our research – not coincidentally, it’s identical to my home Cocoon Create 3D printer. We decided to give the Ninjaflex a go to see if it would print, and if so, what sort of quality we could get since the printer and replacement parts are cheap if we really screwed up! Photographed above is one of our first successful prints, although the truth is we had quite a few failed attempts getting to this point as we experimented with settings and carefully watched each print. The primary settings we are using for these first tests (based off the recommended settings for Ninjaflex which are available in the Printing Guidelines) are:

  • Extruder Temperature: 230°C
  • Build Plate Temperature: 40°C
  • Print Speed: 15mm/s
  • Layer height: 0.2mm
  • Retraction: 5mm (I think this is too much and we will try 0mm or 1mm)

These may not be perfect yet, and I’m keen for anyone’s feedback on what’s led to more successful prints with these soft filaments. The main thing we’ve noticed is that the soft filament is challenging for the extruder to push down into the nozzle and force out the tip – it is quite common for the nozzle to clog and filament to keep feeding through until it comes out the back of the extruder. Luckily nothing has jammed up yet, you can pull the filament back up out of the extruder and try again. With a bit of a search online, it seems that some 3D printable parts may solve this problem, in particular this modified Extruder Drive Block available on Thingiverse which closes the opening where the filament likes to escape, and will hopefully better force it down through the nozzle. The video below from Wanhao USA helps highlight the problem, and how this 3D printed part can fix it.

It’s early days with this filament, and I know the stock extruder of the Duplicator i3 is really not optimised for this type of material. But it can be done, and I’m sure with some tweaking can be made more reliable. Stay tuned as I am currently printing the new block to install on the Duplicator in the coming days, and will report back with results.

– Posted by James Novak

3D Printed Kobayashi Fidget Cube

20180115_Fidget Cube 3D

One of the great opportunities presented by 3D printing is to print multiple parts as a single object, and have them move afterwards as a complete assembly. There are many great examples, and this Kobayashi Fidget Cube has been on my “to-print list” for some time now. The file is freely available on Thingiverse, and it is pretty awesome!

The photos above give some idea of how it works; a series of cubes that are linked, allowing them to rotate around through a series of positions as you fold and open sections of the object. However the video below (not my own) shows exactly how it works, and is basically a form of fidget device that is currently a popular trend.

As well as being a fun object, it is a great test of your printer’s accuracy and settings, and I must admit my Cocoon Create only had average results. The cube works, but some of the movements are much stiffer than the video. This is probably to do with my settings, I was a little impatient in printing so did not optimise as much as necessary things like layer thickness (used 0.2mm and should’ve tried 0.1mm) and printing speed (50mm/s instead of perhaps 30mm/s or less). I also had to use a knife to slice some of the bottom layers where the cubes had fused together on the print plate. Not a bad first effort, but I might try printing again soon to get a really smooth operating fidget cube.

– Posted by James Novak

Organic Models Grown in Grasshopper

During November 2017 I was lucky enough to be involved in a 2-day workshop run by Lionel Dean from Future Factories. Lionel has been working with 3D printing for many years, and his work is very inspirational – I’d recommend taking a look at his projects which all use algorithms to generate complex, one-off products often 3D printed in precious metals like gold. The projects really highlight the capabilities of 3D printing and push the boundaries of what is possible.

The workshop focused on using Grasshopper, which runs as a plugin for the 3D modelling software Rhino. If you’ve been following this blog for a while you’ve probably seen a few videos and demonstrations as I’ve been learning the program, including my successful Kickstarter earlier this year. The video above is the final simulation produced by the end of the workshop, which was an exploration of mimicking natural growth processes, similar to a sprouting seed. It’s not perfect, but definitely highlights the opportunities of using algorithms to design, as opposed to manually creating a singular static form. In Lionel’s work, he often uses these forms of growth to allow people to essentially pause the simulation and have the particular “frame” 3D printed as a custom object.

20171220 Grasshopper Code

For any fellow Grasshopper geeks, above you can get an idea of the code used to generate these sprouts. There is no starting model in Rhino, it is entirely built from this code. Hopefully this will influence some future projects…

– Posted by James Novak

3D Printed Metamorphosis

20170819_3D Butterfly

**Details of this research can be found in the Design-4-Health Conference Proceedings**

3D printing insects and creatures is nothing new, but maybe the months written on the image above indicates something more is going on with these 3D prints…

The 3D models of the caterpillar and butterfly are in fact generated by monthly step data collected on my old Garmin Vivofit – no design (or designer!) required. This is all an experiment to explore how non-designers may be able to use 3D printers without needing to learn complex CAD software, or sit on websites like Thingiverse and download random things just for the sake of printing. With the proliferation of activity trackers and smart watches gathering this data, perhaps there are creative ways for software to generate rewards from this data, which can be sent to a 3D printer and turned into something tangible?

Garmin Steps

I won’t go into all the details and theories right now, this work will be presented at the Design 4 Health conference in Melbourne this December. Visitors will even be able to input their own daily, monthly or yearly step goals, along with their actual steps achieved, and generate their own rewards. This is all controlled in Rhino with Grasshopper using some tricky parametric functions to automatically grow a caterpillar into a butterfly; if the steps achieved are below the goal, you will have a caterpillar, with the number of body segments growing depending on the percentage of achievement towards the goal. If the goal has been exceeded, a butterfly will emerge and grow bigger and bigger as the steps achieved continue to increase over the goal. You can see the results for a number of months of my own data tracking in the image above.

The 3D prints are being done in plastic for the exhibition, the examples above done on UP Plus 2‘s, however there’s no reason a future system couldn’t use chocolate or sugar as an edible reward for achieving your goals! I think it will take some interesting applications of 3D printers such as this to ever see a 3D printer in every home as some experts have predicted. But as anyone with a 3D printer knows, it will also take far more reliable, truly plug-n-play printers to reach this level of ubiquity. Time will tell.

– Posted by James Novak