Using Every Last Drop

IMG_20180917_Webcam 3D Print Mount

Perhaps it’s the result of spending 10 years as a poor uni student, but I really like to use every last drop of liquids: sauce, toothpaste, shampoo and yes, deodorant. Many of the roll-on style deodorants, such as those from Nivea, have a domed lid, meaning it’s impossible to tip them upside down as liquid is running low and store them so gravity can do its thing. In my mind, this is a design flaw in the packaging (although from Nivea’s point of view, this is a great way to keep people buying more products more often).

I had originally planned to create my own design to solve this problem, however, after a quick search on Thingiverse I was pleasantly surprised to see many people had already beat me to it! There are plenty of designs to choose from, and I decided on this helix design for its interesting form. Click here to download the file for yourself from Thingiverse.

The print took just over an hour to complete, and as you can see from the pictures, it does exactly what it promises. I also streamed the 3D print on my YouTube channel, so if you like watching the grass grow, here is an hour of entertainment just for you! Make sure you subscribe if you want to be alerted of the next live 3D print 🙂

– Posted by James Novak

3D Printed Webcam Mount

IMG_20180917_Webcam 3D Print Mount

Whenever I travel I always have a small Guerrilla tripod to easily mount my cameras just about anywhere – the flexible arms make it perfect for wrapping around handrails or quickly levelling on uneven surfaces. Which made it my first choice when it came to mounting an old webcam so I can begin streaming my 3D prints to Youtube!

I’m seeing a lot of people like @wildrosebuilds posting awesome time-lapse videos of their 3D prints, and plenty of tutorials online showing how to build quite elaborate rigs to do so. I don’t really have time to deal with all of the video editing for each print, but the opportunity to live-stream prints directly to Youtube seems like a great way to share what I’m working on in real-time, and also allow me to monitor prints without having to physically be with the printer. However, webcams aren’t designed to mount to the typical screw mechanism used by tripods/cameras, so I had to design my own bracket to allow me to mount an old Logitech C270 HD webcam to the tripod.

The top right image shows the small slide-in clip that screws to the underside of a camera, and locks into the tripod. My first step was to reverse engineer this part with a set of calipers, modelling the geometry in Solidworks. I then added a vertical element to attach to the webcam, which has a hole on the back normally used by a bracket attaching the webcam to a computer screen. An extra lip on the front to hold the webcam in a vertical orientation, and voilà!

The blue bracket has been printed on my Wanhao Duplicator i3 Plus in PLA, and a screw I had lying around holds the webcam to the bracket. A nice little solution that should see some action very soon. Subscribe to my Youtube channel or follow me on Twitter to be alerted when I begin streaming prints, I know it can be a bit like grass growing but watching 3D prints is still addictive to me. If you’d like to download this design for yourself, you can find it on Thingiverse, Pinshape and Cults – feel free to make your own modifications as needed and share, I know the C270 is quite a popular webcam.

– Posted by James Novak

UPDATE: If you want to see my first live-stream using this webcam mount, here it is:

Check out my channel to see more, and subscribe to be alerted when I go live.

3D Printed Prosthetic Research

As a university researcher, it often takes a long time until I can actually share my work publicly. As a result this blog often only tells part of the story, for example I recently posted about 3D printing a prosthetic hand by e-NABLE. What I didn’t say is that this was part of research into adapting the design to perform different tasks. Recently undergraduate product design student Cory Dolman worked with me to prototype some new concepts, and his work has been picked up by UTS who created this great video about his process and the ideas we’ve been bringing to life. You can also read all the details on his blog which was maintained during the project with me here.

For anyone who is yet to realise the opportunities of 3D printing technology, hopefully this video goes some way to showing how quickly designers like Cory and myself are able to iterate designs, constantly testing our ideas and expediting the design process. We hope that as we refine these designs, we will be able to share them back into the e-NABLE community, and allow anyone with access to a 3D printer to not only benefit from the prosthetic, but also continue to iterate and improve it collaboratively. This is what excites me about 3D printing – it’s not just about the technology, but what it enables.

– Posted by James Novak

3D Printed Kobayashi Fidget Cube

20180115_Fidget Cube 3D

One of the great opportunities presented by 3D printing is to print multiple parts as a single object, and have them move afterwards as a complete assembly. There are many great examples, and this Kobayashi Fidget Cube has been on my “to-print list” for some time now. The file is freely available on Thingiverse, and it is pretty awesome!

The photos above give some idea of how it works; a series of cubes that are linked, allowing them to rotate around through a series of positions as you fold and open sections of the object. However the video below (not my own) shows exactly how it works, and is basically a form of fidget device that is currently a popular trend.

As well as being a fun object, it is a great test of your printer’s accuracy and settings, and I must admit my Cocoon Create only had average results. The cube works, but some of the movements are much stiffer than the video. This is probably to do with my settings, I was a little impatient in printing so did not optimise as much as necessary things like layer thickness (used 0.2mm and should’ve tried 0.1mm) and printing speed (50mm/s instead of perhaps 30mm/s or less). I also had to use a knife to slice some of the bottom layers where the cubes had fused together on the print plate. Not a bad first effort, but I might try printing again soon to get a really smooth operating fidget cube.

– Posted by James Novak

Organic Models Grown in Grasshopper

During November 2017 I was lucky enough to be involved in a 2-day workshop run by Lionel Dean from Future Factories. Lionel has been working with 3D printing for many years, and his work is very inspirational – I’d recommend taking a look at his projects which all use algorithms to generate complex, one-off products often 3D printed in precious metals like gold. The projects really highlight the capabilities of 3D printing and push the boundaries of what is possible.

The workshop focused on using Grasshopper, which runs as a plugin for the 3D modelling software Rhino. If you’ve been following this blog for a while you’ve probably seen a few videos and demonstrations as I’ve been learning the program, including my successful Kickstarter earlier this year. The video above is the final simulation produced by the end of the workshop, which was an exploration of mimicking natural growth processes, similar to a sprouting seed. It’s not perfect, but definitely highlights the opportunities of using algorithms to design, as opposed to manually creating a singular static form. In Lionel’s work, he often uses these forms of growth to allow people to essentially pause the simulation and have the particular “frame” 3D printed as a custom object.

20171220 Grasshopper Code

For any fellow Grasshopper geeks, above you can get an idea of the code used to generate these sprouts. There is no starting model in Rhino, it is entirely built from this code. Hopefully this will influence some future projects…

– Posted by James Novak

InMoov Custom Mobile App

It’s been a while since posting about the InMoov robot hand I started building last year. Previously I had everything assembled and was using some direct controls in Grasshopper (plugin for Rhino) to test and tweak the movements of the fingers and wrist (click here to see the last video). That was fun, but not as fun as being able to control the fingers wirelessly from across the room!

Using MIT App Inventor, I’ve created a very basic mobile app that now allows the fingers and wrist to be controlled on my phone using a Bluetooth connection to the Arduino board. It’s nothing fancy right now, just some simple sliders that control the servos, but now that the basics are working some more automated movements could be set up eg. by using the built-in sensors of the phone, movements could be controlled by simply tilting the phone.

20161203_InMoov Display

In order to display the working InMoov hand at the CreateWorld Conference last year, I  also built a display box from plywood since the arm is not really attached to anything and there are a lot of electronics dangling around that are a bit too messy for display. It actually makes moving the hand around and working on it quite a bit easier now since it’s raised up as well. If I had files for this case I would share them, but I went old-school for this one and just created it freehand with a jigsaw – I’m not completely reliant on digital manufacturing (yet!). Inside the box on the right are all the messy electronics, and a hole for the Arduino USB cable to reach through to connect to computer when needed.

I’ve also 3D printed a stamp with my name and the edditive logo to “tag” this project. Using 3D printing to make custom stamps is something I wrote about in one of my first ever blog posts, click here to take a trip back in time. It’s always the little details that bring a project to life for me.

– Posted by James Novak

The Meshmixer Mashup: Mashup-Rex!

Tutorial Meshmixer Mashup

The mashup is a favourite technique in the music world that combines two or more songs together into a single song. They might be from completely different eras or genres and when cleverly mashed together, they create a new smash hit. But did you know that creating a 3D printable mashup is just as easy as creating a musical one? Take a bit of File A, mix it with File B, and you now have your own creative design.

Over the last few weeks I’ve been putting together a new tutorial for my friends at Pinshape, which includes my first video tutorial as well as the usual step-by-step process to follow along with. Click here to learn how to mashup STL files in only 10 easy steps using the freely available software Autodesk Meshmixer.

The mashup is often called a Remix in the 3D printing world, and is a great way to build upon other designs and add your own creative touch, or re-purpose a design for a new application. The video tutorial is a real-time look at the process, which with a bit of practice, will have you remixing new designs in a matter of minutes. If you want to follow along, you just need to install Meshmixer on your computer, and download the 2 T-Rex files used in this tutorial which are free on Pinshape:

  1. Low Poly T-Rex by steven_dakh
  2. The T-Rex Skull by harry (we are only using the head piece, not the jaw)

Mashup-Rex

Alongside the tutorial is my latest design, the Mashup-Rex. I have made this available for free on Pinshape, just click here to download the file. Maybe you you will create your own remix of my remix? If you do, or you just 3D print the Mashup-Rex for yourself, please share it on Pinshape to add to the community and see how far the design can go! In the version pictured above I simply used a coffee stain to “age” the skull, similar to my previous print of the Star Wars Deathtrooper. I’m enjoying this simple technique at the moment, although you may like to use a 2-tone print, or go all out with some painted effects.

Happy mixing!

– Posted by James Novak

Robot Picasso Kickstarter Final Week!

The final week of my very first Kickstarter campaign is now here, and to celebrate I’ve put together a brand new video demonstration of what Robot Picasso can do. This time, rather than using the Solidoodle 3D printer to draw on paper as in the first video, this demonstration shows how you can collaborate with Robot Picasso and use the digital DXF file of your custom artwork to import into software like Adobe Illustrator. From there anything’s possible, including using the design to laser cut into any material!

robot-picasso-laser-cut

It’s been an exciting roller coaster so far, and the hard work is yet to begin making and shipping all the artworks. It’s been challenging being overseas for nearly 2 weeks on a pre-booked holiday – I haven’t been able to spend as much time as I wanted promoting and creating regular updates for the campaign. However it was also quite eye-opening to realise just how much can be done with a laptop and internet connection – the video demonstration was completely created from my hotel in Hawaii, giving you an idea of how versatile Robot Picasso really is. You can receive your own custom DXF file for just $15 AUD, and have it included in the eBook compilation which all backers receive. Great if you are digital savvy and have access to some cool toys like plotters, laser cutters, routers etc.

Please help me to share this campaign on social media, it would be awesome to reach 50 backers over this final week (currently at 32) and increase the amount of artwork in the eBook. If you’re not into getting a custom drawing, you can buy the eBook for just $8 AUD and have it emailed to you after all drawings have been produced. See if you can figure out what each drawing is!

– Posted by James Novak

My First Kickstarter Goes Live!

I don’t normally use my blog to promote or sell anything, but I figure for the launch of my first Kickstarter campaign I can make a small exception! Besides, it’s actually developed from some of my previous posts where I hacked my useless Solidoodle Press 3D printer to draw images and had some fun using a Wii Nunchuck controller to manually move the extruder.

Through the month of January Kickstarter are running the Make 100 Challenge, and I was inspired to set something up quickly that would be a bit of fun for both myself and potential backers. The idea of the challenge is to get something off the ground that is limited to 100 editions, so it’s inspiring to see a lot of new projects that might not normally launch on Kickstarter, many of them quite creative and artistic. That’s where I’ve pitched my Kickstarter – something a bit unusual and creative, yet fitting in with my interests of customization, hacking, digital manufacturing, algorithms, coding, parametric design, CAD… All the fun stuff.

On paper the idea is relatively simple – send me a photograph, I use some software to generate a Picasso-like line drawing, and that drawing gets sent to my hacked Solidoodle Press to be drawn on paper. But hopefully the video shows that the process is a little more complex than that, and quite interesting to watch.

I would love you to take a look, share the link, or if you’re really interested help get this project off the ground with funding levels starting at only $8 for the final eBook compilation. Whatever happens it’s been a great experience to put this campaign together.

– Posted by James Novak

22/1/2017 UPDATE: To thank everyone for your support and reaching the 200% funding milestone, here’s a new short video showing what happens when Robot Picasso draws a cliff-top building.

Robot Picasso also has a new Facebook Page you can follow to keep up to date with the latest developments. Let’s keep the momentum of this campaign and try and get 100 unique drawings!

InMoov Comes to Life

Look! It’s moving. It’s alive. It’s alive… It’s alive, it’s moving, it’s alive, it’s alive, it’s alive, it’s alive, IT’S ALIVE! – Frankenstein.

Yes finally the InMoov robot arm I’ve been slowly printing and assembling is complete and functioning with only the occasional little hiccup. I thought I was really close in my last post where I had assembled all the 3D prints and electronics, but it is definitely the last 10% that takes the most work.

Tensioning the braided lines just right and tying them to the servo’s is a painstaking task, especially in the heatwave we’ve been having in Australia, where you’re trying to resist the urge to wipe sweat from your face while you tie the knot just right… I felt a bit like a surgeon out in a humid jungle performing emergency surgery. A few little broken bits along the way as well from prints splitting or glue not holding, so it’s a relief to finally iron out all the kinks and start playing with the controls.

As you’ll see in the video, I’m using Grasshopper (plugin for Rhino) with the addition of Firefly to control the hand movements at the moment – if you’ve followed my blog for a while you’ve seen multiple demo’s of this software and why I think it’s so good, so I won’t bore you here (if you’re interested check out my project which was displayed at Design Philadelphia 2015). But it basically means I can manually adjust the servo’s in real-time using a simple slider for each finger, or connect fingers to the one slider to control them all at once and create a fist for example. It really makes those final tweaks to the servos easy.

I hope you enjoy seeing this arm come to life – it’s quite inspiring when you see it in real life, especially if you’re familiar with 3D printing and the time it takes just to print all of these parts. Now I can finally start modifying this project and experimenting with the controls, the build is only just the beginning for this robot.

– Posted by James Novak