Oh That’s Handy – 3D Printed Prosthetic

20180114_e-Nable Prosthetic Hand

If you’ve been paying any attention to 3D printing over recent years, no doubt you’ve seen at least a few 3D printed prosthetics. From the Iron Man prosthetic arm to the prosthetics being 3D printed for our animal friends, 3D printing is ushering in a new generation of low-cost, customisable prosthetics. Perhaps you’ve even seen my build of the fully robotic InMoov hand which has been documented on this blog.

At the extremely affordable end of the spectrum for humans, Enabling the Future (also called e-NABLE) is one of the most well-known names, developing a range of  open source prosthetics since 2013, which can be freely downloaded, printed, assembled and sent off to those in need. As part of my research I have wanted to build one of the e-NABLE hands for a while now to understand more about them, particularly in comparison to the more complex InMoov robot arm. As pictured above, I’ve finally got around to printing the Phoenix v2 hand, which is wrist actuated to open/close the fingers.

When you look at all the details, it really is a clever design which is optimised for 3D printing on a desktop FDM machine, with almost no support material or waste, and tolerances that fit really well together. Anyone with a 3D printer could assemble one of these, most of the non-3D printed parts can be sourced at a local hardware store or found in your shed (screws and fishing line). The instructions are very clear, and there are loads of videos to help demonstrate the assembly process and how some of the technical aspects of the hand work. Because I printed in ABS rather than PLA plastic, the only small hurdle I had was in the thermoforming process of the gauntlet (the bent white piece that mounts to the users arm), which required me using a strip heater in the university workshop. If you find yourself in a similar situation, you can check out the details which were posted in one of my previous posts. However, I recommend using PLA if you have the choice to make this part easier, only requiring some boiling water as demonstrated in this video. In itself, this is a really cool technique that I will use in the future to create stronger parts; you can always learn a lot from 3D printing other people’s designs.

Overall the e-NABLE community really has done a great job in refining this design over the years, and I’m already working on some of my own iterations which will hopefully be fed back into the e-NABLE community in the future. If you’re looking for a project to build and learn from, or potentially getting involved in the community and building hands for people in need, Enabling the Future is definitely worth researching.

– Posted by James Novak

Goodbye 3D Printing, Hello 4D Printing

Many people I talk to at events and workshops are only just catching on to this whole 3D printing thing, but did you know some of the exciting research in this field has already moved on to the next dimension – literally?

4D printing might sound a bit weird and wacky, but it basically just means something that has been 3D printed, but changes its shape afterwards since time is the fourth dimension. So a 3D print that changes over time. Skylar Tibbits from MIT is really one of the pioneers of such a concept, so if you want to wrap your head around the concept this link to his Self-Assembly Lab at MIT will have some more videos to explain what it means. Having spent some time lately writing about 4D printing for part of my PhD, I thought it was time to give it a go, taking inspiration from the Active Shoes created by the Self-Assembly Lab.

As you can see from my very rough video, it’s actually quite easy to do. All I did was create a few concentric circles in CAD with a 0.2mm thickness so that they would print only 1 layer thick on my Cocoon Create 3D printer. I then stretched some material (from an old pair of stockings – not mine I swear!) over the base plate and held it in place with clips. A slight adjustment to the height of the base plate to make room for this material and 1 minute later it was done.

20160628_4D Print

The result is really cool (I think) for something that only took 1 minute to print. It’s certainly not perfect, but shows a lot of opportunity for the future of fashion design. If you wanted to only use 3D printing to create this shape it would easily take 20 minutes or more on a standard FDM printer, so I think some more experimentation is required.

– Posted by James Novak

Brisbane 3D Printing Forum

151026 3D Print Forum

Normally I never use this blog to promote anything, but with a 2-day 3D printing forum happening in my part of the world in November, I think it’s my duty to put it out there! Normally I have to travel around the world to attend events like RAPID, so it’s great that my university has sponsored one right here in Brisbane, Australia.

If you’re in this part of the world, or can get here, click this link to read the full schedule and register to attend. I will also be showing my latest wearable technology PhD project (you may notice some of my previous work featured in the flyer!), alongside a selection of students from my Human Machine Interfaces class who have spent the semester using Arduino’s and 3D printing to create everything from exo-skeleton hands to wearable posture correction devices.

Key speakers include Dr Lionel Dean from Future Factories who I’m really interested to speak to about his work in computational design, and Professor Olaf Diegel whose 3D printed guitar you are probably familiar with. Should be a great event so I hope to see you there!

– Posted by James Novak