3D Printed Hooks

20180521_3D Print Hook

3D printing really does solve so many problems – previously I’ve replaced a small whisk in a milk frother, produced my own kitesurfing fins, 3D printed locking mechanisms for some stand up paddles, and made numerous enclosures for Arduinos. What did we do before 3D printing?

This is yet another example of the need for a unique part – some hooks to display some work in front of my office, which could attach to some vertical plywood fins without permanent fixings like screws or staples. The plywood is 17mm thick, which was the only dimension needed to create this hook design, and I’ve modelled the arms to be a maximum of 17mm apart, with a 1º draft angle to really hold on to the plywood towards the back of the arms which are less than 17mm apart. This creates a good clamping force on the plywood. They are also designed so that they require no support material when 3D printing, making them fast and efficient to produce.

While it’s quite a unique case, I’ve decided to share the design on Thingiverse, Pinshape and Cults  in case it’s of use to anyone, or even just a good starting point for your own design. You could even try scaling them in width to fit the dimension of your vertical board. Happy printing.

– Posted by James Novak

Advertisements

3D Printed Prosthetic Research

As a university researcher, it often takes a long time until I can actually share my work publicly. As a result this blog often only tells part of the story, for example I recently posted about 3D printing a prosthetic hand by e-NABLE. What I didn’t say is that this was part of research into adapting the design to perform different tasks. Recently undergraduate product design student Cory Dolman worked with me to prototype some new concepts, and his work has been picked up by UTS who created this great video about his process and the ideas we’ve been bringing to life. You can also read all the details on his blog which was maintained during the project with me here.

For anyone who is yet to realise the opportunities of 3D printing technology, hopefully this video goes some way to showing how quickly designers like Cory and myself are able to iterate designs, constantly testing our ideas and expediting the design process. We hope that as we refine these designs, we will be able to share them back into the e-NABLE community, and allow anyone with access to a 3D printer to not only benefit from the prosthetic, but also continue to iterate and improve it collaboratively. This is what excites me about 3D printing – it’s not just about the technology, but what it enables.

– Posted by James Novak

Oh That’s Handy – 3D Printed Prosthetic

20180114_e-Nable Prosthetic Hand

If you’ve been paying any attention to 3D printing over recent years, no doubt you’ve seen at least a few 3D printed prosthetics. From the Iron Man prosthetic arm to the prosthetics being 3D printed for our animal friends, 3D printing is ushering in a new generation of low-cost, customisable prosthetics. Perhaps you’ve even seen my build of the fully robotic InMoov hand which has been documented on this blog.

At the extremely affordable end of the spectrum for humans, Enabling the Future (also called e-NABLE) is one of the most well-known names, developing a range of  open source prosthetics since 2013, which can be freely downloaded, printed, assembled and sent off to those in need. As part of my research I have wanted to build one of the e-NABLE hands for a while now to understand more about them, particularly in comparison to the more complex InMoov robot arm. As pictured above, I’ve finally got around to printing the Phoenix v2 hand, which is wrist actuated to open/close the fingers.

When you look at all the details, it really is a clever design which is optimised for 3D printing on a desktop FDM machine, with almost no support material or waste, and tolerances that fit really well together. Anyone with a 3D printer could assemble one of these, most of the non-3D printed parts can be sourced at a local hardware store or found in your shed (screws and fishing line). The instructions are very clear, and there are loads of videos to help demonstrate the assembly process and how some of the technical aspects of the hand work. Because I printed in ABS rather than PLA plastic, the only small hurdle I had was in the thermoforming process of the gauntlet (the bent white piece that mounts to the users arm), which required me using a strip heater in the university workshop. If you find yourself in a similar situation, you can check out the details which were posted in one of my previous posts. However, I recommend using PLA if you have the choice to make this part easier, only requiring some boiling water as demonstrated in this video. In itself, this is a really cool technique that I will use in the future to create stronger parts; you can always learn a lot from 3D printing other people’s designs.

Overall the e-NABLE community really has done a great job in refining this design over the years, and I’m already working on some of my own iterations which will hopefully be fed back into the e-NABLE community in the future. If you’re looking for a project to build and learn from, or potentially getting involved in the community and building hands for people in need, Enabling the Future is definitely worth researching.

– Posted by James Novak

Organic Models Grown in Grasshopper

During November 2017 I was lucky enough to be involved in a 2-day workshop run by Lionel Dean from Future Factories. Lionel has been working with 3D printing for many years, and his work is very inspirational – I’d recommend taking a look at his projects which all use algorithms to generate complex, one-off products often 3D printed in precious metals like gold. The projects really highlight the capabilities of 3D printing and push the boundaries of what is possible.

The workshop focused on using Grasshopper, which runs as a plugin for the 3D modelling software Rhino. If you’ve been following this blog for a while you’ve probably seen a few videos and demonstrations as I’ve been learning the program, including my successful Kickstarter earlier this year. The video above is the final simulation produced by the end of the workshop, which was an exploration of mimicking natural growth processes, similar to a sprouting seed. It’s not perfect, but definitely highlights the opportunities of using algorithms to design, as opposed to manually creating a singular static form. In Lionel’s work, he often uses these forms of growth to allow people to essentially pause the simulation and have the particular “frame” 3D printed as a custom object.

20171220 Grasshopper Code

For any fellow Grasshopper geeks, above you can get an idea of the code used to generate these sprouts. There is no starting model in Rhino, it is entirely built from this code. Hopefully this will influence some future projects…

– Posted by James Novak

Thermoforming 3D Prints

20171113_Thermoform 3D Print

Sorry for the blogging silence, this is the longest break I’ve had since starting a number of years ago. Long story short I’ve made a big move recently for work and am only just starting to get back into printing and making new projects. If you follow my social media, you’ve probably noticed some new things starting!

One of the projects I’ve wanted to play with since previously building the InMoov robot arm is the Enabling the Future prosthetics (aka. e-NABLE). This week I 3D printed and built most of the Phoenix v2 hand, which of course is open source and free to download. A really inspiring company, and a vastly more simple design compared to the electronic InMoov! Some of the pieces, which I printed on an UP Mini 2 in ABS plastic, can be seen above. I’ll post full details once I get it up and running, just waiting on some elastics for the fingers. The gauntlet piece, which attaches to the users forearm, is printed in a flat position and then bent into a C shape afterwards. This is a really clever idea for providing the strongest functional part with optimal layer orientation. But how do you bend a 3D print?

Well the instructions from e-NABLE require dipping the piece in boiling water for a few seconds to make it pliable – if you 3D print in PLA, which has a lower melting temperature than ABS. Check out the video here. However ABS is not really going to be affected by boiling water, and just to make sure I did try this technique with my first print. It did get a bit of a bend, but mostly a snap!

For print #2 I instead found myself a strip heater in the workshop, which is perfect for heating a nice clean line and normally used to bend acrylic sheets. A few seconds on each side of the print and it bent perfectly without de-lamination or splitting, and was easy to re-heat to make small adjustments to fit with the hand print. This is a technique I’d never thought of using, but has really given me a lot of ideas for creating 3D prints which are post-processed like this into a stronger shape than if they were 3D printed in their final more complex form. I think some of the simple enclosures I’ve made in the past could be much stronger if considered more like a sheet-metal part, although then this begs the question why not just laser cut the design? Well in the case of this e-NABLE prosthetic, there are some 3D details for snapping in other pieces, which could not be done using a 2D process like laser cutting. This would be important to consider if using this process with 3D printing, but it’s certainly an interesting technique worth further experimentation.

If you’ve done something like this yourself, or have ideas for thermoforming a 3D print, leave me a comment.

– Posted by James Novak

Return of the Beer Bottle Lock

20170823 Beer Lock Blank

It’s been quite a few years since I first posted this design on my blog – check out where it all began here. One of the great things about sharing designs like this on file sharing websites like Thingiverse or Pinshape is that you get to see when someone enjoys your design and shares their own photos of the print, or even better, remixes it to add their own unique twist to the idea. Someone even made a video on Youtube which featured this lock 🙂

Occasionally I get requests, either on these websites, through social media, or on this blog, for me to make alterations to a design, or share the native design files for someone to more easily modify. 9 times out of 10 I’m more than happy to help. A few days ago I was contacted through Twitter to make a simple variation to my Beer Bottle Lock, removing the text on top that says “hands off my beer” to provide a blank surface for someone to more easily add their own custom text.

Given that the file is parametric in Solidworks, the alteration only took a few seconds. However rather than email the files direct, it seemed like a good opportunity to share a remix of my own design on Thingiverse, and hopefully benefit even more people. So you can now download this design for free by clicking here, just like the original.

This got me thinking about remixes, and the fact that many of my favourite 3D printing sites like Pinshape and Cults don’t really allow for remixes to be clearly linked to the original source file. I can either upload a print of a design (just photos, not a new STL file), or upload a completely new design. If I want to let people know this new design is a remix, I have to manually write this in the project description, and supply a URL to the original file as you can see on my upload of this new blank version beer bottle lock on Pinshape. On Thingiverse, you can specifically say your design is a remix of another with the click of a button, and a link is created so others can easily go to the original, and see all remixes to find the one most appropriate for them. This is a better system that ties in with the whole Creative Commons (CC) licencing used by all of these websites.

I hope some of these other file sharing websites will take up the challenge to make file attribution and remixing more transparent, it shouldn’t be left up to the user to understand the licensing options and manually enter this information. A common standard across a website, as done by Thingiverse, would really help encourage more sharing, and appropriate attribution to designers.

– Posted by James Novak

3D Printed Metamorphosis

20170819_3D Butterfly

3D printing insects and creatures is nothing new, but maybe the months written on the image above indicates something more is going on with these 3D prints…

The 3D models of the caterpillar and butterfly are in fact generated by monthly step data collected on my old Garmin Vivofit – no design (or designer!) required. This is all an experiment to explore how non-designers may be able to use 3D printers without needing to learn complex CAD software, or sit on websites like Thingiverse and download random things just for the sake of printing. With the proliferation of activity trackers and smart watches gathering this data, perhaps there are creative ways for software to generate rewards from this data, which can be sent to a 3D printer and turned into something tangible?

Garmin Steps

I won’t go into all the details and theories right now, this work will be presented at the Design 4 Health conference in Melbourne this December. Visitors will even be able to input their own daily, monthly or yearly step goals, along with their actual steps achieved, and generate their own rewards. This is all controlled in Rhino with Grasshopper using some tricky parametric functions to automatically grow a caterpillar into a butterfly; if the steps achieved are below the goal, you will have a caterpillar, with the number of body segments growing depending on the percentage of achievement towards the goal. If the goal has been exceeded, a butterfly will emerge and grow bigger and bigger as the steps achieved continue to increase over the goal. You can see the results for a number of months of my own data tracking in the image above.

The 3D prints are being done in plastic for the exhibition, the examples above done on UP Plus 2‘s, however there’s no reason a future system couldn’t use chocolate or sugar as an edible reward for achieving your goals! I think it will take some interesting applications of 3D printers such as this to ever see a 3D printer in every home as some experts have predicted. But as anyone with a 3D printer knows, it will also take far more reliable, truly plug-n-play printers to reach this level of ubiquity. Time will tell.

– Posted by James Novak

Giant 3D Printed SUP Fin

20170511_3D SUP Fin

Behind the scenes I’ve been working on a Stand Up Paddle (SUP) fin project for quite a while now, 3D printing many prototypes, and more often than not, failing! There is more to this project than meets the eye, but for now the details are under wraps. However I thought it might be interesting to share some of the 3D prints in case anyone feels inspired to give it a go themselves.

The design pictured above is the first one that worked successfully without breaking or having other technical issues. Printed in 4 pieces on my Cocoon Create due to the size, it required a bit of gluing, and as you can see from the pink highlight, a bit of gap filling with a 3Doodler Pen (if you want to know more about using a 3D printing pen as a gap filler, check out one of my previous posts all about it). As a result the fin is about 400mm long, huge compared to the fin that came with the board (which for any SUP fans out there is a Slingshot G-Whiz 9’4″)

20170511_3D SUP Fin

These images show some of the breakages I’ve had due to layer delamination – unfortunately the optimal way to print the 4 pieces in terms of minimising support material and warping is vertical, however the optimal orientation for strength is laying down on the flat sides (similar to the image on the right). A bit of an oversight on my part I’ll admit, however I was genuinely surprised how much force the flat water put on the fin. Another issue may be the minimal infill, which was also beefed up in my later prints to add internal strength. There is always a delicate balance between print orientation, layer strength and infill in 3D printing, to name just a few!

The main thing is that the fin prototype now works, and I may have a more advanced version being printed using Selective Laser Sintering (SLS) as I write this… If you keep an eye on my blog by subscribing below, you may just get to see where this project is going 🙂

– Posted by James Novak

Lucky Bamboo, Lucky 3D Printing

20170627_3D Print Bamboo

My desk is loaded with 3D prints, I’m surrounded by plastic! To even things out a bit I’ve added some greenery in the form of bamboo. The great thing is that it can grow in water, no need for messy soil, and it doesn’t need much light (hopefully the glowing of my computer screen is plenty!)

However the pot I have for it came with a plastic insert (black) designed for soil. It only fits in one way, being tapered, so I couldn’t just flip it upside down and drill a hole to support the bamboo. Of course, that’s just another excuse to design something new for 3D printing!

The white part in the photos above is the simple part I designed, basically the same dimensions as the original black insert but reversed with an open bottom, and a hole to allow the bamboo to fit through, including its roots. This sits down loosely inside the plant pot, and then 2 smaller inserts slot in around the bamboo when it’s inserted to hold it nice and vertical (right image). All printed without support material on my Cocoon Create, now with the Micro Swiss upgraded hotend (which seems to be working very well).

It’s probably not the sort of design worth sharing on 3D file websites given it is very specific to this plant pot, but if for some reason you want this file just leave me a comment and I’ll email it to you.

– Posted by James Novak